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‘““When numbers are large, chance is the best warrant
for certainty.”’
A. S. EppINGTON,
Tthe Nature of the Physical World

““ A situation like this merely means that those details
which determine the future in terms of the past may
be so deep in the structure that at present we have
no immediate experimental knowledge of them and
we may for the present be compelled to give a treat-
ment from a statistical point of view based on con-
siderations of probability.”

P. W. BrRIDGMAN,
The Logic of Modern Physics






PREFACE

Broadly speaking, the object of industry is to set up
economic ways and means of satisfying human wants and in
so doing to reduce everything possible to routines requiring a
minimum amount of human effort. Through the use of the
scientific method, extended to take account of modern statis-
tical concepts, it has been found possible to set up limits
within which the results of routine efforts must lie if they are
to be economical. Deviations in the results of a routine process
outside such limits indicate that the routine has broken down
and will no longer be economical until the cause of trouble is
removed.

This book is the natural outgrowth of an investigation
started some six years ago to develop a scientific basis for
attaining economic control of quality of manufactured product
through the establishment of control limits to indicate at
every stage in the production process from raw materials to
finished product when the quality of product is varying more
than is economically desirable. As such, this book constitutes
a record of progress and an indication of the direction in which
future developments may be expected to take place. To get
as quickly as possible a picture of the way control works, the
reader may find it desirable, after going through Part I, to
consider next the various practical illustrations given in Parts
VI and VII and in Appendix I.

The material in this text was originally organized for
presentation in one of the Out-of-Hour Courses in Bell Tele-
phone Laboratories. Since then it has undergone revision
for use in a course of lectures presented at the request of
Stevens Institute of Technology in its Department of Eco-
nomics of Engineering. Much of the work recordegd herein is
the result of the cooperative effort of many individuals. To a
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considerable extent the experimental data are such as could
have been accumulated only in a large industry.

On the theorétical side the author wishes to acknowledge
the very helpful and suggestive criticisms of his colleague
Dr. T. C. Fry and of Mr. E. C. Molina of the American Tele-
phone and Telegraph Company. On the practical side he
owes a great debt to another colleague, Mr. H. F. Dodge.

The task of accumulating and analyzing the large amount
of data and of putting the manuscript in final form was
borne by Miss Marion B. Cater and Miss Miriam S. Harold,
assisted by Miss Fina E. Giraldi. Mr. F. W. Winters contrib-
uted to the development of the theory. The Bureau of
Publication of the Laboratories cooperated in preparing the
manuscript for publication. To each of these the author is
deeply indebted.

The author is particularly indebted to R. L. Jones, Director
of Apparatus Development, and to G. D. Edwards, Inspection
Engineer, under whose helpful guidance the present basis for
economic control of quality of manufactured product has been
developed.

W. A. SHEWHART.

BeLL TeLEpHONE LABORATORIES, INC.
New York, N. Y.
April, 1923
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CHAPTER 1
CuaracTeRISTICS OF A CONTROLLED QUALITY

1. What is the Problem of Control?

What is the problem of control of quality of manufactured
product? To answer this question, let us put ourselves in
the position of a manufacturer turning out millions of the
same kind of thing every year. Whether it be lead pencils,
chewing gum, bars of soap, telephones, or automobiles, the
problem is much the same. He sets up a standard for the
quality of a given kind of product. He then tries to make
all pieces of product conform with this standard. Here his
troubles begin. For him standard quality is a bull’s-eye, but
like a marksman shooting at a bull’s-eye, he often misses. As
is the case in everything we do, unknown or chance causes
exert their influence. The problem then is: how much may
the quality of a product vary and yet be controlled? In other
words, how much variation should we leave to chance?

To make a thing the way we want to make it is one popular
conception of control. We have been trying to do this for
a good many years and we see the fruition of this effort in the
marvelous industrial development around us. We are sold
on the idea of applying scientific principles. However, a
change is coming about in the principles themselves and this
change gives us a new concept of control.

A few years ago we were inclined to look forward to the
time when a manufacturer would be able to do just what he
wanted to do. We shared the enthusiasm of Pope when he
said “All chance is but direction thou canst not see”, and
we looked forward to the time when we would see thatdirection.
In other words, emphasis was laid on the exactness of physical
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4 ECONOMIC CONTROL OF QUALITY .

laws. Today, however, the emphasis is placed elsewhere as
is indicated by the following quotation from a recent issue,
July, 1927, of the journal Engineering:

Today the mathematical physicist seems more and more inclined
to the opinion that each of the so-called laws of nature is essentially

statistical, and that all our equations and theories can do, is to
provide us with a series of orbits of varying probabilities.

The breakdown of the orthodox scientific theory which
formed the basis of applied science in the past necessitates
the introduction of certain new concepts into industrial
development. Along with this change must come a revision
in our ideas of such things as a controlled product, an econ-
omic standard of quality, and the method of detecting lack
of control or those variations which should not be left to
chance.

Realizing, then, the statistical nature of modern science,
it is but logical for the manufacturer to turn his attention
to the consideration of available ways and means of handling
statistical problems. The necessity for doing this is pointed
out in the recent book! on the application of statistics in
mass production, by Becker, Plaut, and Runge. They say:

It is therefore important to every technician who is dealing with
problems of manufacturing control to know the laws of statistics
and to be able to apply them correctly to his problems.

Another German writer, K. H. Daeves, in writing on somewhat
the same subject says:

Statistical research is a logical method for the control of opera-
tions, for the research engineer, the plant superintendent, and the
production executive.? .

The problem of control viewed from this angle is a compar-
.atively new one. In fact, very little has been written on
the subject. Progress in modifying our concept of control
has been and will be comparatively slow. In the first place,
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it requires the application of certain modern physical concepts;
and in the second place, it requires the application of statistical
methods which up to the present time have been for the most
part left undisturbed in the journals in which they appeared.
This situation is admirably summed up in the January, 1926
issue of Nature as follows:

A large amount of work has been done in developing statistical
methods on the scientific side, and it is natural for anyone interested
in science to hope that all this work may be utilized in commerce
and industry. There are signs that such a movement has started,
and it would be unfortunate indeed if those responsible in practical
affairs fail to take advantage of the improved statistical machinery
now available.

2. Nature of Control

Let us consider a very simple example of our inability
to do exactly what we want to do and thereby illustrate two
characteristics of a controlled product.

Write the letter @ on a piece of paper. Now make another 2
just like the first one; then another and another until you
have a series of 4’s, a, a, a, a, . ... You try to make all the
a’s alike but you don’t; you can’t. You are willing to accept
this as an empirically established fact. But what of it? Let
us see just what this means in respect to control. Why can
we not do a simple thing like making all the 4’s just alike?
Your answer leads to a generalization which all of us are
perhaps willing to accept. It is that there are many causes of
variability among the a’s: the paper was not smooth, the
lead in the pencil was not uniform, and the unavoidable vari-
ability in your external surroundings reacted upon you to
introduce variations in the @’s. But are these the only causes
of variability in the a’s? Probably not.

We accept our human limitations and say that likely
there are many other factors. If we could but name all the
reasons why we cannot make the &’s alike, we would most
assuredly have a better understanding of a certain part of
nature than we now have. Of course, this conceptiqn of what
it means to be able to do what we want to do is not new; it
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does not belong eyclusively to any one field of human thought;
it is commonly accepted. .

The point to*be made in this simple illustration is that
we are limited in doing what we want to do; that to do what
we set out to do, even in so simple a thing as making &’s that
are alike, requires almost infinite knowledge compared with
that which we now possess. It follows, therefore, since we are
thus willing to accept as axiomatic that we cannot do what
we want to do and cannot hope to understand why we cannot,
that we must also accept as axiomatic that a controlled quality
will not be a constant quality. Instead, a controlled quality
must be a variable quality. This is the first characteristic.

But let us go back to the results of the experiment on the
@’s and we shall find out something more about control. Your
a’s are different from my a’s; there is something about your a’s
that makes them yours and something about my &’s that makes
them mine. True, not all of your a’s are alike. Neither are
all of my 4’s alike. Each group of 4’s varies within a certain
range and yet each group is distinguishable from the others.
This distinguishable and, as it were, constant variability
within limits is the second characteristic of control.

3. Definition of Control

For our present purpose a phemomenon will be said to be
controlled when, through the use of past experience, we can predict,
at least within limits, how the phenomenon may be expected to
vary in the future. Here it is understood that prediction within
limits means that we can state, at least approximately, the prob-
ability that the observed phenomenon will fall within the given
limits. .

In this sense the time of the eclipse of the sun is a predictable
phenomenon. So also is the distance covered in successive
intervals of time by a freely falling body. In fact, the prediction
in such cases is extremely precise. It is an entirely different
matter, however, to predict the expected length of life of an
individua] at a given age; the velocity of a molecule at a given
instant of time; the breaking strength of a steel wire of known
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cross section; or numerous other phenomena of like character.
In fact, a prediction of the type illustrated by forecasting the
time of an eclipse of the sun is almost the exception rather
than the rule in scientific and industrial work.

In all forms of prediction an element of chance enters.
The specific problem which concerns us at the present moment
is the formulation of a scientific basis for prediction, taking
into account the element of chance, where, for the purpose of
our discussion, any unknown cause of a phenomenon will be
termed a chance cause.



CHAPTER 1II
ScienTtiFic Basis ror CoNTROL

1. Three Important Postulates

What can we say about the future behavior of a phenomenon
acting under the influence of unknown or chance causes?
I doubt that, in general, we can say anything. For example,
let me ask: ‘“What will be the price of your favorite stock
thirty years from today?” Are you willing to gamble much
on your powers of prediction in such a case? Probably not.
However, if I ask: “Suppose you were to toss a penny one
hundred times, thirty years from today, what proportion of
heads would you expect to find?”, your willingness to gamble
on your powers of prediction would be of an entirely different
order than in the previous case.

The recognized difference between these two situations
leads us to make the following simple postulate:

Postulate 1—All chance systems of causes are not alike
in the sense that they enable us to predict the future in terms
of the past.

Hence, if we are to be able to predict the quality of product
even within limits, we must find some criterion to apply to
observed variability in quality to determine whether or not
the cause system producing it is such as to make future pre-
dictions possible.

Perhaps the natural course to follow is to glean what we
can about the workings of unknown chance causes which are
generally acknowledged to be controlled in the sense that they
permit of prediction within limits. Perhaps no better examples
could be considered than length of human life and molecular
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motion. It might appear that nothing is moge uncertain than
life itself, unless perhaps it be molecular motion. Yet there
is something certain about these uncertainties! In the laws of
mortality and distribution of molecular displacement, we find
some of the essential characteristics of control within limits.

A. Law of Mortality

The date of death always has seemed to be fixed by chance
even though great human effort has been expended in trying
to rob chance of this prerogative. We come into this world
and from that very instant on are surrounded by causes of

FRACTION DYING AT A GIVEN AGE
PROBABILITY

45 50
AGE IN YEARS

Fic. 1.—Law or MoriaLiry—Law or FrLucruarions CONTROLLED WITHIN LimiTs.

death seeking our life. Who knows whether or not death will
overtake us within the next year? If it does, what will be the
cause? These questions we cannot answer. Some of us are
to fall at one time from one cause, others at another time
from another cause. In this fight for life we see then the
element of uncertainty and'the interplay of numerous unknown
or chance causes.

However, when we study the effect of these chance causes
in producing deaths in large groups of individuals, we find some
indication of a controlled condition. We find that this hidden
host of causes produce deaths at an average rate which does
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not differ much over long periods of time. From such obser-
vations we are led to believe that, as we approach the condition
of homogeneity ‘of population and surroundings, we approach
what is customarily termed a “Law of Mortality” such as
indicated schematically in Fig. 1. In other words, we believe
that in the limiting case of homogeneity the causes of death
function so as to make the probability of dying within given
age limits, such as forty-five to fifty, constant. That is, we
believe these causes are controlled. In other words, we assume
the existence of a kind of statistical equilibrium among the
effects of an unknown system of chance causes expressible in
the assumption that the probability of dying within a given
age limit, under the assumed conditions, is an objective and
constant reality.

B. Molecular Motion

Just about a century ago, in 1827 to be exact, an English
botanist, Brown, saw something through his microscope that
caught his interest. It was motion going on among the sus-
pended particles almost as though they were alive. In a way it
resembled the dance of dust particles in sunlight, so familiar
to us, but this dance differed from that of the dust particles
in 1mportant respects,—for example, ad_]acent particles seen
under the microscope did not necessarily move in even approx-
imately the same direction, as do adjacent dust particles sus-
pended in the air.

Watch such motion for several minutes. So long as the
temperature remains constant, there is no change. Watch it
for hours, the motion remains characteristically the same.
Watch it for days, we see no difference. Even particles sus-
pended in liquids enclosed in quartz crystals for thousands of
years show exactly the same kind'of motion. Therefore, to
the best of our knowledge there is remarkable permanence to
this motion. Its characteristics remain constant. Here we
certainly find a remarkable degree of constancy exhibited by a
chance system of causes.

Suppdse we follow the motion of one particle to get a better
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picture of this constancy. This has been, done for us by
several mvestlgators, notably Perrin. In such an experiment
he noted the position of a particle at the end of equal intervals
of time, Fig. 2. He found that the direction of this motion
observed in one interval differed in general from that in the
next succeeding interval; that the direction of the motion

Fic. 2—A Crose-ur orF MoLEcuLAR MOTION APPEARING ABSOLUTELY
IRREGULAR, YE1 CONTROLLED WITHIN LimiTs,

presents what we instinctively call absolute irregularity. Let
us ask ourselves certain questions about this motion.

Suppose we fix our attention on the particle at the point 4.
What made it move to B in the next interval of time? Of
course we answer by saying that a particle moves at a given
instant in a given direction, say 4B, because the resultant
force of the molecules hitting it in a plane perpendicular teo
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this direction from the side away from B is greater than that
on the side toward B; but at any given instant of time there
is no way of telling what molecules are engaged in giving it
such motion. We do not even know how many molecules are
taking part. Do what we will, so long as the temperature is
kept constant, we cannot change this motion in a given system.
It cannot be said, for example, when the particle is at the point
B that during the next interval of time it will move to C.
We can do nothing to control the motion in the matter of dis-
placement or in the matter of the direction of this displacement.

Let us consider either the x or y components of the segments
of the paths. Within recent years we find abundant evidence
indicating that these displacements appear to be distributed
about zero in accord with what is called the normal law.!

Such evidence as that provided by the law of mortality
and the law of distribution of molecular displacements leads us
to assume that there cxist in nature phenomena controlled by
systems of chance causes such that the probability dy of the
magnitude X of a characteristic of some such phenomenon
falling within the interval X to X + 4X is expressible as a
function f of the quantity X" and certain parameters represented
symbolically in the equation

{Iy =f(‘\'> )‘ly )‘2) LY )‘m)d/\’) (2)

where the N’s denote the parameters. Such a system of causes
we shall term constant because the probability &y is independent
of time. We shall take as our second postulate:

Postulate 2—Constant systems of chance causes do exist
in nature.

To say that such systems of causes exist in nature, however,
is one thing; to say that such systems of causes exist in a

! That 1s to say, 1f x represents the deviation from the mean displacement, zero in
this case, the probability dy of x lying within the range x to x + dx is given by
x2

dy = ———¢ 208 dx, (1
4 2T

where o Is the root mean square deviation.
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production procgss is quite another thing. Today we have
abundant evidence of the existence of such systems of causes
in the production of telephone equipment. The practical
situation, however, is that in the majority of cases there are
unknown causes of variability in the quality of a product which
do not belong to a constant system. This fact was discovered
very early in the development of control methods, and these
causes were called assignable. The question naturally arose as
to whether it was possible, in general, to find and eliminate
such causes. Less than ten years ago it seemed reasonable to
assume that this could be done. Today we have abundant
evidence to justify this assumption. We shall, therefore,
adopt as our third postulate:

Postulate 3—Assignable causes of variation may be
Sound and eliminated.

Hence, to secure control, the manufacturer must seek to
find and eliminate assignable causes. In practice, however,
he has the difficulty of judging from an observed set of data
whether or not assignable causes are present. A simple illus-
tration will make this point clear.

2. When do Fluctuations Indicate Trouble?

In many instances the quality of the product is measured
by the fraction non-conforming to engineering specifications
or, as we say, the fraction defective. Table 1 gives for a
period of twelve months the observed fluctuations in this
fraction for two kinds of product designated here as Type A
and Type B. For each month we have the sample size #,

. e . n
the number defective 7, and the fraction p = —. We can
n

better visualize the extent of these fluctuations in fraction
defective by plotting the data as in Fig. 3-a and Fig. 3-6.
What we need is some yardstick to detect in such variations
any evidence of the presence of assignable causes. Can we
find such, a yardstick? Experience of the kind soon to be con-
siderea indicates that we can. It leads us to conclude that
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it is feasible to establish criteria useful in detecting the presence
of assignable causes of variation or, in other words, criteria
which when applied to a set of observed vafues will indicate
whether or not it is reasonable to believe that the causes of
variability should be left to chance. Such criteria are basic
to any method of securing control within limits. Let us, there-
fore, consider them critically. It is too much to expect that
the criteria will be infallible. We are amply rewarded if they
appear to work in the majority of cases.

Generally speaking, the criteria are of the nature of limits
derived from past experience showing within what range
the fluctuations in quality should remain, if they are to be
left to chance. For example, when such limits are placed on
the fluctuations in the qualities shown in Fig. 3, we find, as
shown in Fig. 4, that in one case two points fall outside the
limits and in the other case no point falls outside the limits.

TasLE 1.—FLuctuaTiOoNs IN QuAaLITY oF Two MaNuracTturep Probucrs

Apparatus Type A Apparatus Type B

Fraction Fraction
Number | Number | pefecrive Number | Number | pefective

Month |Inspected| Defective " Month |Inspected| Defective "

n " prP=- n ny p=-

n n

Jan . §27 4 o oo76 || Jan 169 1 0.0059
Feb . 610 5 o0 o082 || Feb 99 3 o 0303
March .| 428 1 o o117 || March. 208 1 o 0048
April 400 2 o ocoso || April 196 1 0 0051
May 498 15 o o3o1 May 132 1 o o076
June 500 3 o oobo || June .. 89 1 o oll12
July. . 395 3 0 0076 || July . 167 1 o oobo
Aug. . 393 2 0 oos1 || Aug. . 200 1 0 oos5c
Sept. 625 3 0 0048 || Sept 171 2 o o117
Oct 465 13 o 0280 || Oct 122 | S ~ oo82
Nov 446 1 o ot12 || Nov 107 3 o 0280
Dec 510 3 o0 0059 || Dec 132 1 o 0076
Average 483 o8 § 25| o oroy || Average 149 33 1 42 | 0 009§

".
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Upon the basis af the use of such limits, we look for trouble
in the form of assignable causes in one case but not in the other.
t
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However, the question remains: Should we expect to be able
to find-and eliminate causes of variability only when deviations
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fall outside the limits? First, let us see what statistical theory
has to say in answer to this question.

Upon the basis of Postulate 3, it follows that we can find
“and remove causes of variability until the remaining system
of causes is constant or until we reach that state where the
probability that the deviations in quality remain within any
two fixed limits (Fig. 5) is constant. However, this assumption
alone does not tell us that there are certain limits within which
all observed values of quality should remain provided the
causes cannot be found and eliminated. In fact, as long as

SOME FUNCTION OF QUALITY X
o®
z
r
=<
(0]
C
[e)
I
-
2
»
3
o
z
(7]

®
(7]
X
o
[
r
o
)
m
°
-
m
-
-
.
-
o
°
2
o5
z
&
m

AS TIME GOES ON

F16. 5.—JupGMENT PLus MODERN STATISTICAL MACHINERY MAKES POSSIBLE THE
EstaBLisuMENT OF Such Limirs

the limits are set so that the probability of falling within the
limits 1s less than unity, we may always expect a certain
percentage of observations to fall outside the limits even though
the system of causes be constant. In other words, the accept-
ance of this assumption gives us a right to believe that there is
an objective state of control within limits but in itself it does
not furnish a practical criterion for determining when variations
in quality, such as those indicated in Fig. 3, should'be left
to chance.

Furthermore, we may say that mathematical statistics as
such does not give us the desired criterion. What does this
situation mean in plain everyday engineering English? “Simply
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this: such criteria, it they exist, cannot be shown to exist by
any theorizing alone, no matter how well equipped the theorist
is in respect to probability or statistical theory. We see in
this situation the long recognized dividing line between theory
and practice. The available statistical machinery referred to
by the magazine Nature is, as we might expect, not an end
in itself but merely a means to an end. In other words, the
fact that the criterion which we happen to use has a fine
ancestry of highbrow statistical theorems does not justify its
use. Such justification must come from empirical evidence
that it works. As the practical engineer might say, the proof
of the pudding is in the eating. Let us therefore look for the
proof.

3. Evidence that Criteria Exist for Detecting Assignable Causes

A. Fig. 6 shows the results of one of the first large scale
experiments to determine whether or not indications given by
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Fic. 6.—EvIDENCE oF IMPROVEMENT IN QuaLiTy witH ApPROACH TO CONTROL.
.

such a criterion applied to quality measured in terms of fraction
defective were justified by experience. About thirty typlcal
items used in the telephone plant and produced in lots running
into the millions per year were made the basis for this study.
As shown in this figure, during 1923-24 these items showed
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68 per cent control about a relatively low average of 1.4 per
cent defective.! However, as the assignable causes, indicated
by deviations in the observed monthly frdction defective
*falling outside of control limits, were found and eliminated, the
quality of product approached the state of control as indicated
by an increase of from 68 per cent to 84 per cent control
by the latter part of 1926. At the same time the quality
improved; in 1923-24 the average per cent defective was 1.4
per cent, whereas by 1926 this had been reduced to 0.8 per cent.
Here we get some typical evidence that, in general, as the
assignable causes are removed, the variations tend to fall more
nearly within the limits as indicated by an increase from
68 per cent to 84 per cent. Such evidence is, of course, one
sided. It shows that when points fall outside the limits,
experience indicates that we can find assignable causes, but
it does not indicate that when points fall within such limits,
we cannot find causes of variability. However, this kind of
evidence is provided by the following two typical illustrations.

B. In the production of a certain kind of equipment,
considerable cost was involved in securing the necessary
electrical insulation by means of materials previously used for
that purpose. A research program was started to secure a
cheaper material. After a long series of preliminary exper-
iments, a tentative substitute was chosen and an extensive
series of tests of insulation resistance were made on this
material, care being taken to eliminate all known causes of
variability. Table 2 gives the results of 204 observations of
resistance in megohms taken on as many samples of the
proposed substitute material. Reading from top to bottom
beginning at the left column and continuing throughout the
table gives the order in which the observations were made.
The question is: “Should such variations be left to chance?”

No a priori reason existed for believing that the measure-
ments forming one portion of this series should be different
from those in any other portion. In other words, there was

! Jones, R. L., “Quality of Telephone Materials,” Bell Telephone Quarterly, June,
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no rational basis for dividing the total set of data into groups
of a given number of observations except that it was reasonable
to believe that tne system of causes might have changed from
day to day as a result of changes in such things as atmospheric
conditions, observers, and materials. In general, if such
changes are to take place, we may readily detect their effect
if we divide the total number of observations into compar
atively small subgroups. In this particular instance, the
size of the subgroup was taken as four and the black dots in
Fig. 7-a show the successive averages of four observations in
the order in which they were taken. The dotted lines are the

TasLE 2.—FELeEcTrIcAL REsisTANCE OF INsuLATION IN MEGOHMS—
SnouLp SucH Variations BE Lerr 10 CHaNCE?

5,045 | 4,635 | 4,700 | 4,650 | 4,640 | 3,940 | 4,570 | 4,560 | 4,450 | 4,500 | 5,075 | 4,500
4352 5,100 | 4,600 | 4,170 | 4,335 | 3,700 | 4,570 | 3,075 | 4,450 | 4,770 | 4,925 | 4,850
4:350| 5,450 | 4,110 [ 4,255 | 5,000 | 3,650 | 4,855 | 2,968 | 4,850 | 5,150 | §,075 | 4,930
3,975| 4,635 | 4.410 | 4,170 | 4,615 | 4,445 | 4,160 | 4,080 | 4,450 | 4,850 | 4,926 | 4,700
4,290 4,720 | 4,180 | 4,375 | 4,215 | 4,000 | 4,325 | 4,080 | 3,635 | 4,700 | 5,250 | 4,890
4,430 4,810 [ 4,790 | 4,175 | 4,275 | 4,845 | 4,125 | 42425 | 3,635 | 5,000 | 4,915 | 4,625
4,485 | 4,565 | 4,790 | 4,550 | 4,275 | 5,000 | 4,100 | 4,300 | 3,635 | §,000 | §,600 | 4,425
4285 | 4,410 | 4,340 | 4,450 | 5,000 | 4,560 | 4,340 | 4,430 | 3,900 | §,000 | 5,075 | 4,135
3,980 | 4,065 | 4,895 | 2,855 | 4,615 | 4,700 | 4,575 | 4,840 | 4,340 | 4,700 | 4,450 | 4,190
3,925 | 4,565 | 5,750 | 2,920 | 4,735 | 4,310 | 3,875 | 4,840 | 4,340 | 4,500 | 4,215 | 4,080
3,645 5190 | 4,740 | 4,375 [ 4,215 | 4,310 | 4,050 [ 4,310 | 3,665 | 4,840 | 4,325 | 3,690
3,762 4,725 | 5,000 | 4,375 | 4,700 | 5,000 | 4,050 | 4,185 | 3,775 | 5,075 | 4,665 | 5,050
3300 4,640 | 4,895 | 4,355 | 4,700 | 4,575 | 4,685 | 4,570 | 5,000 | 5,000 | 4,615 | 4,625
3,685 4,640 | 4,255 | 4,090 | 4,700 | 4,700 | 4,685 | 4,700 | 4,850 | 4,770 | 4,615 | 5,150
31463 4,895 1 4,170 | 5,000 | 4,700 | 4,430 | 4,430 | 4,44© | 4,775 | 4,570 | 4,500 | 5,280
5,200 4,790 | 3,850 | 4,335 | 4,095 | 4,850 | 4,300 | 4,850 | 4,500 [ 4,925 | 4,765 | 5,000
5,100 4,845 | 4,445 | 5,000 | 4,095 | 4,850 | 4,690 | 4,125 | 4,770 | 4,775 | 4,500 | 5,000

limits within which experience has shown that these observa-
tions should fall, taking into account the size of the sample,
provided the variability should be left to chance. Several
of the observed values lie outside these limits. This was
taken as an indication of the existence of causes of variability
which could be found and eliminated.

Furtlier research was instituted at this point to find these
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causes of variability. Several were found, and after these
had been eliminated another series of observed values gave the
results indicated in Fig. 7-6. Here we see® that all of the
points lie within the limits. We assumed, therefore, upon the
basis of this test, that it was not feasible for research to go
much further in eliminating causes of variability. Because of
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Fic. 7.—SnouLp THESE VariaTions BE LEFr To CHANcE?

the importance of this particular experiment, however, con-
siderably more work was done, but it failed to reveal causes of
variability. Here then is a typical case where the criterion
indicates when variability should be left to chance.

C. Suppose now that we take another illustration where
it is reasonable to believe that almost everything humanly
possible has been done to remove the assignable causes of
variation in a set of data. Perhaps the outstanding series of
observations of this typeeis that given by Millikan in his
famous measurement of the charge on an electron. -Treating
his data in a manner similar to that indicated above, we get
the results shown in Fig. 8. All of the points are within the
dotted limits. Hence the indication of the test is consistent
with the accepted conclusion that those factors whichwged not
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be left to change had been eliminated before this particular
set of data were‘ taken.

4. Role Played by Statistical Theory

It may appear thus far that mathematical statistics plays
a relatively minor role in laying a basis for economic control of
quality. Such, however, is not the case. In fact, a central
concept in engineering work today is that almost every physical
property is a statistical distribution. In other words, an observed
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set of data constitutes a sample of the effects of unknown
chance causes. It is at once apparent, therefore, that sampling
theory should prove a valuable tool in testing engineering
hypotheses. Here it is that muck of the most recent math-
ematical theory becomes of value, particularly in analysis
involving the use of comparatively small numbers of observa-
tions.

Let us consider, for example, some property such as the
tensilg-strength of a material. If our previous assumptions
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are justified, it follows that, after we have done everything
we can to eliminate assignable causes of variation, there will
still remain a certain amount of variabilit} exhibiting the
“state of control. Let us consider an extensive series of data
recently published by a member of the Forest Products Lab-
oratories,! Fig. 9. Here we have the results of tests for modulus
of rupture on 1,304 small test specimens of Sitka spruce, the
kind of material used extensively in aeroplane propellers
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Fic. 9.—VaruaBiLity IN MobuLus oF Rupruke or CLEAR SPECIMENS oF GREEN
Sitka Spruck TypicaL orF THE StaTistTicAL NATURE oF PHysicAL PROPERTIES.

during the War. The wide variability is certainly striking.
The curve is an approximation to the distribution function for
this particular property representing what is at least approxi-
mately a state of control. *The importance of going from the
sample to the smooth distribution is at once apparent and in
this case a comparatively small amount of refinement in
statistical machinery is required.
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Suppose, however, that instead of more than a thousand
measurements wé had only a very small number, as is so often
the case in engireering work. Our estimation of the variability
of the distribution function representing the state of control’
upon the basis of the information given by the sample would
necessarily be quite different from that ordinarily used by
engineers, see Fig. 10. This is true even though to begin with
we make the same kind of assumption as engineers have been
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accustomed to make in the past. This we may take as a
typical example of the fact that the production engineer
finds it to his advantage to keep ‘abreast of the developments
in statistical theory. Here we use vzew in the sense that much
of the modern statistical theory is new to most engineers.

5. Conclusion

Based upon evidence such as already presented, it appears
R ¢ . . . . .
feasibl="Yo set up criteria by which to determine when assignable
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causes of variation in quality have been eliminated so that the
product may then be considered to be contro‘ed within limits.
This state of control appears to be, in general, a kind of limit
*to which we may expect to go economically in finding and
removing causes of variability without changing a major
portion of the manufacturing process as, for example, would
be involved in the substitution of new materials or designs.



CHAPTER III

ADVANTAGES SECURED THROUGH CONTROL

1. Reduction in the Cost of Inspection

If we can be assured that something we use is produced
under controlled conditions, we do not feel the need for
inspecting it as much as we would if we did not have this
assurance. For example, we do not waste our money on doctors’
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bills so long as we are willing to attribute the variability in
our health to the effects of what in our pr\sent terminology
corresponds to a constant system of chance causes.

In the early stages of production there are usually causes
of variability which must be weeded out through the process
of inspection. As we proceed to eliminate assignable causes,
the quality of product usually approaches a state of stable
equilibrium somewhat after the manner of the two specific
illustrations presented in Fig. 11. In both instances, the
record goes back for more than two years and the process of
elimination in each case covers a period of more than a year.

It is evident that as the quality approaches what appears
to be a comparatively stable state, the need for inspection
is reduced.

2. Reduction in the Cost of Rejections

That we may better visualize the economic significance
of control, we shall now view the production process as a whole.
We take as a specific illustration che manufacture of telephone
equipment. Picture, if you will, the twenty or more raw
materials such as gold, platinum, silver, copper, tin, lead, wool,
rubber, silk, and so forth, literally collected from the four
corners of the earth and poured into the manufacturing process.
The telephone instrument as it emerges at the end of the
production process is not so simple as it looks. In it there are
201 parts, and in the line and equipment making possible the
connection of one telephone to another, there are approximately
110,000 more parts. The annual production of most of these
parts runs into the millions so that the total annual production
of parts runs into the billions.

How shall the production process for such a complicated
mechanism be engineered'so as to secure the economies of
quantity production and at the same time a finished product
with quality characteristics lying within specified tolerances?
One such scheme is illustrated in Fig. 12. Here the manu-
facturing process is indicated schematically as a funnel, at the
small end of which we have the 100 per cent inspectioh-screen
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to protect the consumer by assuring that the quality of the
finished product fis satisfactory. Obviously, however, it is
often more economical to throw out defective material at some
of the initial stages in production rather than to let it pass on
to the final stage where it would likely cause the rejection of a

INSPECTION
TO REDUCE COST
OF PRODUCTION

100 °/6 INSPECTION
TO —_—

PROTECT CONSUMER

F1c. 12.—AN Economic ProbucTiON SCHEME.

finished unit of product. For example, we see to the right
of the funnel, piles of defectives, which must be junked or
reclaimed at considerable cost.

It may be shown theoretically that, by eliminating
assignable causes of variability, we arrive at a limit to which
it is fefSible to go in reducing the fraction defective. It must
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suffice here to call attention to the kind of evidence indicating
that this limiting situation is actually appriached in practice
as we remove the assignable causes of variability.

Let us refer again to Fig. 6 which is particularly significant
because it represents the results of a large scale experiment
carried on under commercial conditions. As the black sectors
in the pie charts decrease in size, indicating progress in the
removal of assignable causes, we find simultaneously a decrease
in the average per cent defective from 1.4 to 0.8. Here we
see how control works to reduce the amount of defective
material. However, this is such an important point that it is
perhaps interesting to consider an illustration from outside
the telephone field.

Recent work of the Food Research Institute of Stanford
University shows that the loss from stale bread constitutes an
important item of cost for a great number of wholesale as well
as some retail bakeries. It is estimated that this factor alone
costs the people of the United States millions of dollars per
year. The sales manager of every baking corporation is
intcrested, therefore, in detecting and finding assignable
causes of variation in the returns of stale bread if by so doing
he can reduce this loss to a minimum.

Some time ago it became possible to secure the weekly
record of return of stale bread for ten different bakeries oper-
ating in a certain metropolitan district. These observed
results are shown graphically in Fig. 13. At once we see that
there is a definite lack of control on the part of each bakery.
The important thing to note, however, is that the bakery
having the lowest percentage return, 1.99 per cent, also shows
better control than the other bakeries as judged by the number
of points falling outside the control limits in the 36-week
period.

’

3. Attainment of Maximum Benefits from Quantity Production

The quality of the finished product depends upon the
qualities of raw materials, piece-parts, and the assembling
process. It follows from theory that so long as such -quality
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will be controllef, and will therefore exhibit minimum vari-

characteristics a17 controlled, the quality of the finished unit
ability. Other advantages also result. TFor example, by
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gaining control, it is possible, as we have already seen, to
establish standard statistical distributions for the many quality
characefistics involved in design. Very briefly, let us see
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just how these statistical distributions representing states ot
control become useful in securing an economi design and pro-
duction scheme.

Suppose we consider a simple problem in which we assume
that the quality characteristic Y in the finished product is
a function f of m different quality characteristics, X1, X, . .
Xm, representable symbolically by

Y =f()(1, Xz, ey Xm). (3)

For example, one of the X’s might be a modulus of rupture,
another a diameter of cross section, and Y a breaking load.
Engineering requirements generally place certain tolerances on
the variability in the resultant quality characteristic ¥, which
variability is in turn a function of the variabilities in each
of the m different quality characteristics.

It follows theoretically that the quality characteristic ¥V
will be controlled if the 7 independent characteristics are
controlled. Knowing the distribution functions for each of
the m different independent variables, it is possible to approx-
imate very closely the per cent of the finished product which
may be expected to have a quality characteristic Y within
the specified tolerances. If, for example, it is desirable to
minimize the variability in the resultant quality ¥ by proper
choice of materials, and if standard distribution functions
for the given quality characteristics are available for each of
several materials, it is possible to choose that particular
material which will minimize the variability of the resultant
quality at a minimum of cost.

b

4. Attainment of Uniform Quality even though Inspection Test
is Destructive

So often the quality of 4 material of the greatest importance
to the individual is one which cannot be measured” directly
without destroying the material itself. So it is with the fuse
that protects your home; with the steering rod on your car;
with the rails that hold the locomotive in its course; with
the propeller of an aeroplane, and so on indefinitely. “ilow are
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we to know that a product which cannot be tested in respect
to a given qualityfis satisfactory in respect to this same quality?
How are we to know that the fuse will blow at a given current;
that the steering rod of your car will not break under maximum
load placed upon it? To answer such questions, we must rely
upon previous experience. In such a case, causes of variation
in quality are unknown and yet we are concerned in assuring
ourselves that the quality is satisfactory.

Enough has been said to show that here is one of the very
important applications of the theory of control. By weeding
out assignable causes of variability, the manufacturer goes to
the feasible limit in assuring uniform quality.

5. Reduction in Tolerance Limits

By securing control and by making use of modern statistical
tools, the manufacturer not only is able to assure quality,
even though it cannot be measured directly, but is also often
able to reduce the tolerance limits in that quality as one very
simple illustration will serve to indicate.

Let us again consider tensile strength of material. Here
the measure of either hardness or density is often used to
indicate tensile strength. In such cases, it is customary
practice to use calibration curves based upon the concept of
functional relationship between such characteristics. 1f instead
of basing our use of these tests upon the concept of functional
relationship, we base it upon the concept of statistical rela-
tionship, we can make use of planes and surfaces of regression
as a means of calibration. In general, this procedure makes
possible a reduction in the error of measurcment of the tensile
strength and hence the establishment of closer tolerances.
This is true because, when quality can be measured directly
and accurately, we can separate those samples of a material
for which the quality lies within given tolerance limits from
all others. Now, when the method of measurement is indirect
and also subject to error, this separation can only be carried
on in the probability sense assuming the errors of measure-
ment 4re controlled by a constant system of chance causes.
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It is obvious that, corresponding to a given probability, the

tolerance limits may be reduced as we reNuce the error of
measurement.
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Fig. 14 gives a simple illustration. Here the comparative
magnitudes of the standard deviations of tensile strength about
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two lines of regression and the plane of regression are shown
schematically by/che lines in Fig. 14-d. The lengths of these
are proportional to the allowable tolerance limits corresponding
to a given probability. Tt is customary practice to use the line
of regressmn between tensile strength and hardness. Note
the improvement effected by using the plane of regression.
By using the hardness and density together as a measure of
tensile strength, the tolerance range on tensile strength cor-
responding to a given probability can be made less than it
would be if either of these measures were used alone.

6. Conclusion

It seems reasonable to believe that there is an objective
state of control, making possible the prediction of quality
within limits even though the causes of variability are unknown.
Evidence has been given to indicate that through the use of
statistical machinery in the hands of an engineer artful in
making the right kind of hypotheses, it appears possible to
establish criteria which indicate when the state of control
has been reached. It has been pointed out that by securing
this state of control, we can secure the following advantages:

1. Reduction in the cost of inspection.

2. Reduction in the cost of rejection.

3- Attainment of maximum benefits from quantity pro-
duction.

4. Attainment of uniform quality even though the
inspection test is destructive.

5. Reduction in tolerance hmlts where quality measure-
ment is indirect.
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CHAPTER 1V
DEeFINITION OF QUALITY

1. Introductory Note

When we analyze our conception of quality, we find that
the term is used in several different ways. Hence, it is essential
that we decide, first of all, whether the discussion is to be
limited to a particular concept of quality, or to be so framed
as to include the essential element in each of the numerous
conceptions. One purpose in considering the various definitions
of quality is merely to show that in any case the measure of
quality is a quantity which may take on different numerical
values. In other words, the measure of quality, no matter
what the definition of quality may be, is a variable. We shall
usually represent this variable by the symbol X. In future
chapters when we are discussing quality control, we shall treat
of the control of the measurable part of quality as defined in
any one of the different ways indicated below.

The more important purpose in considering the various
definitions of quality 1s, however, to examine the basic require-
ments of effective specifications of quality.

2. Popular Conception of Quality

Dating at least from the time of Aristotle, there has been
some tendency to conceive of quality as indicating the goodness
of an object. The majority® of advertisers appeal to the public
upon the basis of the quality of product. In so doirg, they
implicitly assume that there is a measure of goodness which
can be applied to all kinds of product whether it be vacuum
tubes, sewing machines, automobiles, Grape Nuts, books,
cypress flooring, Indiana limestone, or correspondencé school

37
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courses. Such a concept, is, however, too indefinite for

practical purpogks.

3. Conception of the Quality of a Thing as a Set of Characteristics

Quality, in Latin gualitas, comes from qualis, meaning
“how constituted” and signifies such as the thing really is.
Suppose we consider a simple thing like water. What is it
that makes water what it is? One might answer that it is
the chemical combination of hydrogen and oxygen represented
by the symbol H:O. To do so is to evade the question, how-
ever, for to begin with we must know what we mean by the
symbol H,O. If we turn to a textbook on chemistry, we find
that the quality of water is expressed in terms of its chemical
and physical properties. For example, it is colorless in thin
layers and blue in thick layers. It is odorless and tasteless,
has a density of unity at 4 deg. C., a heat of vaporization of
540 calories at 100 deg. C., and remains a liquid within a
certain temperature range. It dissociates at 1,000 deg. C.
in accord with the formula

H: + O« H.0,

1.8 oR.2Y,

and is an active catalyst. Even this description, however, is
only an incomplete specification of water in terms of that
which makes it what it is.

In general, the quality of a thing is that which is inherent
in it so that we cannot alter the quality without altering the
thing. It is that from which anything can be said to be such
and such and may, for example, be a characteristic explainable
by an adjective admitting degrees of comparison.

Going a little deeper we see thdt possibly without exception
every conceptual ‘“something” is really a group of conceptions
more elementary in form. The minimum number of con-
ceptions required to define an object may be called the qualities
thereof. For example, Jevons says: “The mind learns to
regard each object as an aggregate of qualities and acquires
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the power of dwelling at will upon one or other of those qualities
to the exclusion of the rest.”? L

The same conception underlies the definition of quality
‘of manufactured product as given by a prominent author on
this subject. Thus he says: “The term ‘quality’, as applied
to the products turned out by industry, means the character-
istic or group or combination of characteristics which dis-
tinguishes one article from another, or the goods of one
manufacturer from those of his competitors, or one grade of
product from a certain factory from another grade turned out
by the same factory.” 2 In this sense a thing has qualities
and not a quality. For example, a piece of material has
weight density, dimensions, and so on indefinitely.

For our purposec we shall assume that, had we but the
ability to see, we would find a very large number m’ of different
characteristics required to define what even the simplest thing
really is. A thing is therefore formally defined in this sense,
if the specific magnitudes of the m’ characteristics are known.

Admittedly we do not know a single one of these—not
even the number of possible ones in any given case. Those that
we take as elementary we believe to be but a combination of
several truly elementary ones, so that the nearest we can
approach to the description of any physical thing is to say
that it has a finite number of measurable characteristics,
X1, Xoy ..., Xm, where of course, m’ is presumably greater
than m.

Thus we might take the characteristics of capacity, induct-
ance, and resistance as defining the quality of a relay. Geo-
metrically speaking, the quality of a relay in this sense can
be thought of as a point (P = X1, X21, Xa1) in three dimen-
sional space with coordinate axes Xi, X3, and X3, see Fig. 15.
Of course, to define the quality of the relay in terms of those
characteristics which make it what it is would require a space
of m’ dimensions, where m’ is the unknown number of inde-

Y The Principles of Science, 2nd Edition, page 25.
? Radford, G. S., The Control of Quality in Manufacturing, published by Ronald
Press Company, 1922, page 4.
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pendent characteristics required to define a relay. For example,
to characterize & monatomic gas molecule we need a space of
six dimensions, since one dimension is required for each of three
space coordinates and for each of three velocity components.

Quality then as we shall use it may be a quantity having
known physical dimensions such as length, velocity, resistance;
a quantity representing the magnitude of any entity in units
of the same kind; or merely a number such as a rate, number
defective, and so on.

X
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P = Xy15 X21, X31
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Fi1g. 15.—Quavrity As A PoInr In F1c. 16.—Quariry CoNFORMS IF WITHIN
SpACE. VoLumE.

4. Conception of the Quality of a Thing as an Attribute

Customary engineering practice specifies the limits or tol-
erances within which the different quality characteristics arc
supposed to lie provided the singlé piece of apparatus or thing
under study is to be considered as satisfactory or conforming to
specifications. Geometrically this'can be represented for the
previous example involving three quality characteristics by
Fig. 16. A piece of apparatus or thing havmg a quality falling
within the rectangular element of volume is said to possess the
positive attribute of conformance to specified standards. Obvi-
ously this element of volume may be large because often only
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a single lower or upper bound is given to some one or more
of the quality characteristics. If the quality falls outside
this volume, the piece of apparatus or thing is said to possess
the negative attribute of non-conformance. The property of
positive attribute is variously characterized as good, satis-
factory, conforming, standard, and that of negative attribute
is characterized as unsatisfactory, non-conforming, and so on.

5. Quality of a Number of the Same Kind of Things

To begin with, let us consider the information presented
in Table 3 giving the measurements of tensile strength, hard-
ness, and density on sixty specimens of a certain aluminum
die-casting. This table gives three quality characteristics
for each specimen.! To picture the quality of the group of
sixty specimens, it is therefore necessary to consider the one
hundred and eighty measures of the different quality charac-
teristics given in this table. Now our graphical representation
of quality becomes a real aid because we must have some
method of visualizing the significance of a set of data such
as that in Table 3.

First let us think only of the sixty values of tensile strength.
How shall we arrive at a simple way of expressing the quality

TENSILE STRENGTH X
Fie. 17.—QuaLrty IN Respecr To TENSILE STRENGTH.

of the sixty specimens in respect to this characteristic? The
answer is simple if we think of the sixty values of tensile
strength plotted along a line such as indicated in Fig. 17. Here,
of course, we have plotted only a few of the sixty points.
This graphical presentation at once suggests that we seek
some distribution function to represent the density of the
points along the linc. If we can find such a function and if this
function can be integrated, it is obvious that the integral within

1 The abbreviation psi is used here and elsewhere for pounds per square inch. All
hardness measurements are given throughout this book in Rockwell’s “E” even though
the “E” may sometimes be omitted.
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specified limits gives us the number of specimens having a
value of tensilesstrength within these limits.

TasLe 3.—QuaLrry ExprEssep 1IN TaBuLar Form .
Speci Tensile [Hardness in | Density Soe Tensile | Hardness in| Density
pect- Strength | Rockwells in Spet Strength | Rockwells in
men . A R me 1 . . s
in psi E gm/cm? in psi E gm/cm?
1 29,314 5§30 2 666 31 29,250 71 3 2 648
2 34,860 70 2 2 708 32 27,992 52 7 2 400
3 36,818 84 3 2 865 KR} 31,852 76 § 2 692
4 30,120 55 3 2 627 34 27,646 63 7 2 669
1 34,020 78 5 2 81 35 31,698 69 2 2 628
6 30,824 63 5 2 633 36 30,844 6y 2 2 696
7 | 35396 714 2 671 37 | 31,988 61 4 2 648
8 31,260 53 4 2 650 38 36,640 83 7 2 775
9 32,184 82.5 2 717 39 41,578 94 7 2 874
10 33,424 67 3 2 014 40 30,496 70 2 2 700
11 37,694 69 5 2 524 41 29,668 80 4 2 583
12 34,876 73 © 2 741 2 32,622 76 7 2 668
13 24,660 55 7 2 61y 43 32,822 82 9 2 679
14 | 34,760 85 8 2755 || 44 | 30,380 550 2 6og
15 38,020 95 4 2 846 45 38,580 83 2 2 721
16 25,680 511 2 57§ 46 28,202 62 6 2 678
17 25,810 74 4 2 561 47 29,192 78 o 2 610
18 26,460 G4 1 2 593 48 35,036 83 6 2 728
19 | 28,070 77 8 2 039 49 | 346332 64 © 2 709
20 24,640 52 4 2 611 50 34,750 75 3 2 880
21 25,770 69 1 2 696 51 40,578 84 8 2 949
22 23,690 535 2 606 52 28,900 49 4 2 669
23 | 28,650 64 3 2616 || 53 | 34,648 74 2 2 624
24 32,380 82 7 2 748 54 31,244 59 8 2 705
2§ 28,210 557 2 518 55 33,802 75 2 2 736
26 34,002 70 5 2 726 56 34,850 577 2 701
27 | 3470 875 2 875 57 | 36:690 79 3 2 776
28 29,248 507 2 58¢ 58 33344 67 6 2.754
29 28,710 72 3 2 547 59 34,440 77 © 2 660
30 29,830 59 § 2 606 ()'o 34,650 74 8 2 819

In a similar way we may represent the sixty observed
values of tensile strength and one other property, such as
hardness, by sixty points in a plane. Again the graphical
representation suggests the need for some distribution function
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which will give us the density of the points in this plane.
In just the same way, the graphical representation of the
values of tensile strength, hardness, and density in three
dimensional space suggests the need for a distribution function
indicating the density in space. The graphical representation
of the sixty points in a plane and in space was given in Fig. 14.

In the inspection of product manufactured in quantities
running into the thousands or even millions of pieces per year,
it would be a very laborious task to measure and record as a
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variable the quality characteristic for each piece of apparatus
or piece-part. Instead, the practice is usually followed of
recording only the fraction non-conforming or defective in
each lot of size N. In the course of a year, then, we have a
record such as shown graphically in Fig. 18 representing the
quality of a given kind of apparatus measured in terms of
fraction defective. .

In the general case each piece of apparatus is supposed to
possess several quality characteristics and the results of an
inspection of a lot of size NV on the basis of, say m, quality
characteristics, X1, Xz, ..., Xm, can be reported either as
the fractions, p1, p2, . . . , Pm, Within limits for the respective
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characteristics or the fraction p within all the limits. Obviously,
this fraction p does not give as much information about the
preduct as the set of m fractions.

6. Quality of Product

Thus far we have considered the meaning of the quality
of a number of the same kind of things such as the set of sixty
specimens of a given kind of die-casting. Now we come to the
problem of expressing the quality of a product for a given
period of time where this product is composed of M different
kinds of things, such as condensers, relays, vacuum tubes,
telephone poles, and so on.

We must define quality of product in such a way that
the numerical measure of this quality serves the following two
purposes:

1. To make it possible for one to see whether or not the
quality of product for a given period differs from that for some
other period taken as a basis of comparison.

2. To make possible the comparison of qualities of product
for two or more periods to determine whether or not the dif-
ferences are greater than should be left to chance.

A. Distribution of Quality Characteristics

Let us assume that there are NV, things of one kind such
as condensers, NV things of another kind such as relays, and
finally Ny things of the Mth kind. Let mi, mz, ..., mu
represent the number of quality characteristics on the M
different kinds of things. I‘rom what we have already seen,
it is obvious that our picture of .quality must be derived in
some way from the m + m2 + ... 4 my observed frequency
distributions of the quality characteristics. The quality of
product for two different periods consists of two such sets of
frequency distributions. For example, Fig. 19 shows 12
observed frequency distributions for a single quality char-
acteristic, efficiency, for a given kind of product over a period
of twelve months. Since there were five quality characteristics
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for this particular kind of apparatus, the complete record of
quality requires five sets of frequency distributions similar to
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those shown in Fig. 19. As already said, the corresponding
picture of the quality of product consisting of M different
kinds of apparatus or things would require as many sets of
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such distribution functions as there are quality characteristics.
Such a picture contains the whole of the available information.
B. Quality Statistics .

The information presented in the form of frequency dis-
tributions does not permit readily of quantitative comparison.
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To get around this difficulty, we may use instead of the fre-
quency distribution itself some characteristic or statistic of
this distribution, such as the fraction within a given range,
the average, the dispersion, or the skewness. For example,
the information given in Fig. 19 is presented in terms of certain
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of these statistics in Fig. 20. Whereas we have only one
frequency distribution for each characteristic, we have one
or more statistics for each distribution. These statistics,
however, give us a quantitative picture of the variation in the
given quality characteristic.

C. Quality Rate
The two measures of quality just considered are based
upon the conception of quality as that which makes a thing
what it is and, therefore, involve the use of as many quality
characteristics as are required to define the product. In this
sense, the quality of one thing cannot be added to that of
another; for example, the quality of a condenser in terms of
capacity, leakage, and so forth, cannot be added to the quality
of a telephone pole in terms of its modulus of rupture and other
physical properties.
If, however, we can find some measure of the goodness of
a thing, no matter what it is, we can then get a single quanti-
tative measure of quality of product. One way of doing this
is to weight each quality characteristic. As an example, let
us assume that for some one quality characteristic X, of the
product, we have the observed relative frequency distribution
Xi, Xoey oo, Xy ooy X @
Duts Pizy .o oy Pyy .o o5 Pun, 4
where the X’s represent the » different observed values of the
variable X, p;V; is the number of times that the characteristic
X:j was observed, and NV, is the total number of things having
the quality characteristic X;. By choosing a weighting factor
w,(X,) where w; is a functional relationship different, in general,
for each characteristic, we get a transformed frequency dis-
tribution
w(An), wi(Xi2), . .7 wi(Xy), . . ., wi(Xin)

Y8 D2y e e ey Pijs -« s P,
It is assumed usually that the weights are additive so that
the total weight #, for the quality characteristic X; on the N;
pieces of product having this characteristic is
W, = N[pawi(Xi) + paw(Xi) + . .. + pyn(Xy) + . . . + pingn(Xan)]. (6)

(5)
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The corresponding total weight /#” for the whole product then
becomes .

W=W +W.4 ...+ . .+ Wo tmyi-tmus (7)'

where as above there are supposed to be my + m2 + . . . + ma
quality characteristics.

It is obvious that the total weight from month to month
for any given product will vary because of the effects of un-
known or chance causes which, as we have already seen,
produce variations in the observed distributions of the re-
spective quality characteristics. We also see that to be able
to interpret the significance of variations in respect to this
weight, we must be in a position to consider the significance
of variations in the observed frequency functions from which
this weight is calculated, assuming that for a given kind of
product the number of pieces produced each month is approx-
imately the same.

In general, an attempt is made to obtain a weighting
factor which represents approximately the economic value of a
quality characteristic having a given magnitude. Obviously,
however, it is very difficult to attain such an ideal, and con-
sequently the weights usually represent empirical factors.!

By dividing the weight # of product for a given period
by the weight #; of the same product over some previous
period taken as a base, we get the customary form of index

w

= (8)

It should be noted that the statement that the index of quality
is such and such does not give any indication of what the quality
is unless we take into account the details of the method underlying
the formation of the index. In fact a high or low index does
not necessarily mean that the quality is good or bad in a given
case unless it is known that for the particular index with which

1 One very simple form of rate used extensively in the Bell System is described by

Mr. H. F. Dodge in an article “A Method of Rating Manufactured Product,” Bell
System Technical Journal, Volume VII, pp. 350-368, April, 1928.
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we are dealing, a high index means good and a low index means
bad quality from the accepted viewpoint.

<. Quality as a Relationship

Often the quality of a thing, such as the quality of a manu-
facturing process, is of the nature of a relationship. As an
example, we may consider the process of creosoting telephone
poles. In general, the depth of penetration of the creosote
appears to depend upon several factors, one of which is the
depth of sapwood, as is evidenced by the data given in Table 4,
showing the depth of sapwood and the corresponding depth
of penetration for 1,370 telephone poles. In this case the
relationship between these two factors is an important char-
acteristic of the quality of the process.

To compare the quality of the creosoting process of one
plant with that of each of several others, we must try to inter-
pret the significance of observed differences in the results
obtained by different plants, such as the seven records shown
in Fig. 21. To facilitate comparisons of this character, we
need to have available quantitative measures of the correla-
tion or relationship between the quality characteristics corre-
sponding to a given process.

The importance of the concept of relationship in specifying
quality is more deeply seated than might be indicated by this
simple problem. In trying to define the quality of a thing in
terms of those characteristics which make it what it is, we called
attention to the fact that we make use of what are perhaps
secondary characteristics. For example, in expressing the
quality of a thing in respect to strength we make use of meas-
ures of ductility, brittleness, and hardness— characteristics
which are likely dependent to a certain degree upon some com-
mon factor more elemental in nature. Hence it follows that
not only the magnitudes of the characteristics but also their
interrelationships are significant in characterizing a thing.
The representation of quality in m space as outlined in a
previous paragraph lends itself to a quantitative expression
of quality relationship.
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The corresponding total weight # for the whole product then
becomes .

W=W1+Wg‘|‘...+W,+...+1le+m2+...+m”, (7)

d
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/4

= ®)
S
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we are dealing, a high index means good and a low index means
bad quality from the accepted viewpoint.

v1. Quality as a Relationship

Often the quality of a thing, such as the quality of a manu-
facturing process, is of the nature of a relationship. As an
example, we may consider the process of creosoting telephone
poles. In general, the depth of penetration of the creosote
appears to depend upon several factors, one of which is the
depth of sapwood, as is evidenced by the data given in Table 4,
showing the depth of sapwood and the corresponding depth
of penetration for 1,370 telephone poles. In this case the
relationship between these two factors is an important char-
acteristic of the quality of the process.

To compare the quality of the creosoting process of one
plant with that of each of several others, we must try to inter-
pret the significance of observed differences in the results
obtained by different plants, such as the seven records shown
in Fig. 21. To facilitate comparisons of this character, we
need to have available quantitative measures of the correla-
tion or relationship between the quality characteristics corre-
sponding to a given process.

The importance of the concept of relationship in specifying
quality is more deeply seated than might be indicated by this
simple problem. In trying to define the quality of a thing in
terms of those characteristics which make it what it is, we called
attention to the fact that we make use of what are perhaps
secondary characteristics. For example, in expressing the
quality of a thing in respect to strength we make use of meas-
ures of ductility, brittleness, and hardness—characteristics
which are likely dependent to a certain degree upon some com-
mon factor more elemental in nature. Hence it follows that
not only the magnitudes of the characteristics but also their
interrelationships are significant in characterizing a thing.
The representation of quality in m space as outlined in a
previous paragraph lends itself to a quantitative expression
of quality relationship.
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DEFINITION OF QUALITY 53

8. How Shall Quality be Defined?

If we are to talk intelligently about the quality of a thing
cr the quality of a product, we must have in mind a clear
picture of what we mean by quality. Enough has been said
to indicate that there are two common aspects of quality.
One of these has to do with the consideration of the quality
of a thing as an objective reality independent of the cxistence
of man. The other has to do with what we think, feel, or
sense as a result of the objective reality. In other words, there
is a subjective side of quality. For example, we are dealing
with the subjective concept of quality when we attempt to
measure the goodness of a thing, for it is impossible to think
of a thing as having goodness independent of some human
want. In fact, this subjective concept of quality is closely
tied up with the utility or value of the objective physical
propertics of the thing itself.

For the most part we may think of the objective quality
characteristics of a thing as being constant and measurable
in the sense that physical laws are quantitatively expressible
and independent of time.  When we consider a quality from
the subjective viewpoint, comparatively serious difficultics
arise. 'To begin with, there are various aspects of the concept
of value. We may differentiate between the following tour?
kinds of value:

1. Use 3. Esteem
2. Cost 4. Exchange

For example, although the air we breathe is useful, it does
not have cost or exchange value, and until we are deprived of
it we do not esteem it highly.

Although the use value remains comparatively fixed,
we find that the significance of cost, esteem, and exchange
values are relative and subject to wide variation. Furthermore,
we do not have any universally accepted measures of such
values. Our division of several different things of a given



54 ECONOMIC CONTROL OF QUALITY

kind into two classes, good and bad, necessitates a quantitative,
fixed measure which we do not have in the case of subjective
value.

From the viewpoint of control of quality in manufacture,
it is necessary to establish standards of quality in a quantitative
manner. For this reason we are forced at the present time
to express such standards, insofar as possible, in terms of
quantitatively measurable physical properties. This does not
mean, however, that the subjective measure of quality is not
of interest. On the contrary, it is the subjective measure that
is of commercial interest. It is this subjective side that we
have in mind when we say that the standards of living have
changed.

Looked at broadly there are at a given time certain human
wants to be fulfilled through the fabrication of raw materials
into finished products of different kinds. These wants are
statistical in nature in that the quality of a finished product
in terms of the physical characteristics wanted by one individual
is not the same for all individuals. The first step of the en-
gineer in trying to satisfy these wants is, therefore, that of
translating as nearly as possible these wants into the physical
characteristics of the thing manufactured to satisfy these
wants. In taking this step intuition and judgment play an
important role as well as the broad knowledge of the human
element involved in the wants of individuals. The second
step of the engineer is to set up ways and means of obtaining a
product which will differ from the arbitrarily set standards
for these quality characteristics by no more than may be left
to chance.

The discussion of the economic control of quality of manu-
factured product in this book is limited to a consideration of
this second step. The broader concept of economic control
naturally includes the problem of continually shifting the
standards expressed in terms of measurable physical properties
to meet best the shifting economic value of these particular
physical characteristics depending upon shifting human wants.



* CHAPTER V
THE ProsBLEM oF PRESENTATION OF DaTa

1. Why We Take Data

You go to your tailor for a suit of clothes and the first
thing that he does is to make some measurements; you go
to your physician because you are ill and the first thing that
he does is to make some measurements. The objects of making
measurements in these two cases are different. They typify
the two general objects of making measurements to be con.
sidered in our future discussion. They are:

(@) To obtain quantitative information.
(4) To obtain a causal explanation of observed
phenomena.

Measurement to attain the first object enters into our
everyday life because everything that we buy or sell is by the
yard, pound, or some quantitative unit of measure. Such
measurements also play an important role in scientific work.
In fact, there was a time not so very long ago when it was felt
that physical measurements were largely of this character;
as, for example, those of the so-called physical constants, such
as the charge on an electron, the coefficient of expansion of a
material, and so on. Quite naturally, measurement to obtain
quantitative information plays an important réle in industry,
particularly in the inspection of quality of product where it is
necessary to have quantitative information to show just what
the quality for a given peridd really is.

The second object of taking data is, however, of perhaps
greater importance than the first in the field of research and
development because here we are in search of physical principles
to explain the observed phenomenon so that we may predict
the future in terms of the past. In the control of quality of

55



56 ECONOMIC CONTROL OF QUALITY

manufactured product, it is one thing to measure the quality
to see whether or not it meets certain standards and it is
quite another thing to make use of these measurements to
predict and control the quality in the future. -

We shall have occasion to lay stress on four kinds of causal
interpretation, typical examples of which are:

4. We note differences between the qualities of a number
of the same kind of things, such as apples on a tree, produced,
insofar as we know, under the same essential conditions.
The important question which we shall ask is: Should such
differences be left to chance?

B. Having concluded in a given casc that the differences
in the qualities of a group of things are such as should be left
to chance, we often want to discover the distribution of these
qualities which we may expect to get in the long run. In terms
of our simple illustration we want to discover the distribution
of the size of apples to be expected under the same essential
conditions over a long period of time. A study of this problem
involves the use of some kind of mental picture of the way
certain kinds of chance cause systems act in nature.

C. Two serics of observations of some quality charac-
teristic have been taken under what may or may not have
been the same essential conditions. From an analysis of the
data, we are called upon to determine whether or not the two
conditions were esscntially the same. Again using the apple
tree illustration, we can picture two trees of the same kind
treated with different fertilizers. The question to be con-
sidered is: Do the differences between the quality charac-
teristics of the apples on one tree and those of the apples on
another indicate that the fertilizers exerted a controlling
influence? '

D. We take sets of observations of m quality characteristics
on a number of the same kind of thing, and from these try to
determine whether or not there is any underlying causal
relationship between the characteristics. For example, we
might try to find out if the size of an apple is related to its
acidity.
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2. The Problem of Presentation

Starting with the raw data, the problem of presentation
Yepends upon the way the data are to be used or, in other
words, the kind of information that they are supposed to give.
For example, the tailor’s measurements for your suit of clothes
must be presented practically in the detailed form in which
they were taken.

In general, however, it is neither feasible nor desirable
for one reason or another to present raw data in detail such
as is donc in Table 4 for the depth of sapwood and depth of
penetration in telephone poles. Such a presentation usually
requires too much space. Furthermore, data in this form do
not furnish the quantitative information usually desired and
are not readily interpretable in terms of causal relationships.

The problem of presentation involves the use of methods
of analysis designed to extract from the raw data all of the
essential information contained therein for the answer to
questions which may be put in attaining the object for which
the data were taken.

We shall consider briefly methods for presenting such
data in both tabular and graphical forms which assist materially
in helping onc to obtain the information present in the original
series of observations. We shall find, however, that the results
thus obtained are for the most part qualitative, and for this
reason do not effectively serve the purpose of comparing sets
of data. To secure quantitative reduction of data, we must
therefore introduce methods for summarizing a series of values
of a given quality characteristic by means of a few simple
functions which express quantitatively such things as the
central tendency, dispersion, and skewness of the observed
frequency distribution of" the quality characteristic. In
particular, we need quantitative measures of the relationship
between quality characteristics.

We shall find that there are many ways of carrying out
the details of such analyses and that there are many functions
which measure such characteristics as central tendency, dis-
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persion, and skewness, some of which are far more effective
than others in giving the essential information.

3. Essential Information Defined

.

We take data to answer specific questions. We shall say
that a set of statistics for a given set of data contains the essential
information given by the data when, through the use of these
statistics, we can answer the questions in such a way that
further analysis of the data will not modify our answers to a
practical extent.

4. Statement of the General Problem

The raw data with which we have to deal are usually
given in one of the following ways. We may have a series of
n observations of the quality of a single thing, such as # obser-
vations of the length of a rod, the resistance of a relay, or the
capacity of a condenser; or we may have a series of # observa-
tions representing single observations of some quality charac-
teristic on # different things, such as the 1,370 observations of
the depth of sapwood previously given in Table 4.

In one case we have # values

AL Xoyoony Xoy ooy X (9)

representmg as many measurements of the same quality on one
thing, and in the other case we have # values representing
single measurements of the same quality on each of 7 things.

In a similar way, we may have a series of # successively
observed values of a group of m quality characteristics on
some one thing, or observed values of say 7 qualities on each
of, let us say, # things. In either case we have a series of
observations, such as

A’[l, A'IL’, « .oy .‘,11,, ey AY]n
A';)], )&';32, e ey .Y:n,' ey Xoy

(10}
AX‘ll’ Aj'_), ...,4\J1, e ey AN

Xml, 4“"2) ~eey X’"l‘l:; o e ey« ’mn
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Naturally, we always have a certain purpose in accu-
mulating such a series of data, and the object of tabular
and graphical presentation is to assist in the interpretation
‘of the raw data in terms of the object for which they were
taken. As already noted, the distributions of values of depth
of sapwood and depth of penetration as given in Table 4
illustrate the first form (9) in which raw data may occur.
Similarly, the two distributions taken together illustrate the
second form (10).

Later we shall have occasion to make use of several simple
geometrical conceptions in our study of the ways and means of
presenting data. It will be helpful, therefore, for us to keep
in mind some of the problems involved in the analysis of data,
both from the viewpoint of presentation of facts and from
that of causal interpretation stated in terms of these geometrical
conceptions.

For example, the problem of presenting a series, such
as (10), of m qualities on each of # things may be looked upon
as that of locating a set of # points in a space of 7 dimensions
in reference to certain lines, planes, or hypersurfaces A
simple illustration is that previously given in Fig. 14 where
we may think of the points as being located in respect to the
coordinate axes in one case and in respect to either the lines
or planes of regression in the other case.

There are many ways in which we may set up this problem.
For instance, in the case of two variables X and Y, we may
seek some function f(X,Y) such that f(X, Y)dXdY tells us
approximately how many of the observed values lie within
the element of area X to X + dX and Y to Y 4 4Y. Such a
function would give us approximately the density of the
observed points in the plane. Sometimes, however, it is more
convenient to have some measure of the clustering of the
points about a curve Y = f(X). It may be sufficient to know
that approximately a certain per cent of the points lie within
some band f(X) + e as shown in Fig. 22-4.

It may be of interest to note how some of the problems
of causal interpretation mentioned at the beginning of this
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chapter can be expressed in terms of certain geometrical
representations of the data. Thus, if we represent a series of
n measurements of some quality characteristic by points along
a straight line, we are often interested in knowing whether or
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Fic. 22.—Two Mernops oF REPRESENTING DaTA.

not the particular spacing of the points indicates that the
causes of variation between the observed values are such as
should be left to chance, Fig. 23-2. Assuming that we have
decided that the causes of variation should be left to chance,

o—b-

&

QUALITY CHARACTERISTIC X QUALITY CHARACTERISTIC X
SAMPLE UNIVERSE
a) (b)

F16. 23.—ScuEMATIC RELATION BETWEEN SAMPLE AND UNIVERSE.

we are usually interested in discovering the distribution of the
variable to be expected if these same causes are allowed to
operate for an indefinite period of time. In other words, we
seek the universe of effects for a given cause system, Fig. 23-4.
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It is obvious that the other problems of causal interpretation
may also be given a geometric significance.

S. True Versus Observed Quality

Thus far we have purposely avoided the problem of trying
to distinguish between true quality and the observed mag-
nitudes of the quality characteristics. Obviously, it is necessary
to try to do this since all measurements are subject to error.
Hence, to obtain the essential information in respect to the
distribution of true quality from a set of observed data such
as either (9) or (10), we must have some means of correcting
for errors of measurement existing in the original data.

To get a picture of what we mean by true quality, let us
consider first a very simple illustration. What is the true
length of the line ./B? Strictly speaking, it does not have a

A B

true length in the sense of an unchangeable value which is a
constant of nature. On the contrary, we believe that the
molecules at the ends of the line are jumping around in random
fashion so that in the last analysis the line does not have a
length except in the sense of some distribution of length or
in the sense of some characteristic of a distribution function,
such as an average.

Whereas, in the case of the length of the line (in fact the
magnitudes of most physical quantities) the objective or
true quality is a frequency distribution function, there are
instances where we believe that the true quality is perhaps a
fixed constant of nature. As an illustration, it appears that
most physicists regard the charge on an electron as such an
objective constant.

Even the most precise measurements of such a quantity,
however, are subject to chance causes of variation or, as we say,
errors of measurement. As evidence that there always remains
a nucleus of chance causes of variation in even the best physical
measurements, we may take the series of observed values of
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the charge on an electron originally given! by Millikan, Table .
The problem of presenting the essential information contained
in such a set of measurements of some quantity assumed to
be a constant is that of finding the best estimate of this con-
stant.

TaBLE 5.—MiLLIKAN'S OBsErvarions oF CHARGE oN AN ELEcTrON

rd >< ]Ol(l

4 781 4 764 4777 4 8oy 4 761 4 769
4795 4776 4 765 4 790 4792 4 Bob
4 769 477 4 785 4779 4 758 4779
4 792 4 789 4 Ho5 4 788 4 764 4 785
4 779 4772 4 768 4772 4 810 4 790
4 775 4 789 4 8o1 4 791 4 799 4 777
4 772 4 764 4 785 4 788 4779 4 749
4 791 4774+ 4783 4783 4 797 4 781
4 782 4 778 4 808 4 740 4 790

4 767 4 791 4771 4 775 4 747

Now let us consider the meaning of true quality where
we have one or more series of measurements (9) or (10) on a
number of different things. It is obvious from what has been
said that the true quality in such a case is a frequency distri-
bution function. It is, however, not the objective frequency
distribution function of the observed values, for these contain
errors of measurement. It is rather this frequency distribution
function corrected for errors of measurement. Since, in com-
mercial work, the error of measurement is often large, it follows
that the distribution of observed values may differ significantly
from our best estimate of the true distribution function. Hence,
in our discussion of the ways and means of presenting data,
we must lay the basis for correcting, insofar as possible, the
original data for errors of measurement.

! These data are those given in the first edition of Millikan’s book The Electron,
published by the University of Chicago Press. For our purpose, we shall neglect in all
further discussions of these data the fact that certain corrections should be made as
outlined by Millikan if we are concerned with the problem of giving the best estimate
of the charge on an electron. To do this, it would also be necessary to weight the
values as he has done. For the latest discussion of the use of these data in estimating
the most probable value of the charge on an electron, see ““ Most Probable 1930 Values
of the Electron and Related Constants,” R. A. Millikan, published in the Physical
Review, May 15, 1930, pp. 1231-1237.



CHAPTER VI
PreseNTATION OF DaTa BY TaABLES AND GRAPHS

1. Presentation of Ungrouped Data

Perhaps the most useful way of presenting an ungrouped
distribution of raw data in tabular form is that in which the
values of the variable are arranged or permuted in ascending
order of magnitude. Such a permutation is termed a frequency
distribution. Let us consider this form of presentation for the
fifty-eight observed values of the charge on an electron given
in Table 5.

TasLe 6.—TaBuLarR PrESENTATION OF PERMUTED SERIES OF DaTA

47740, 4747, 4749, 4758, 4.761, 4.764, 4.764, 4.764, 4.765, 4.767, 4.768, 4.769, 4.769,
4770, 4770 4772 4772 4770 4774 4775, 4775, 4776, 4777, 4777, 47718, 4779
4779, 4779, 4779, 4-781, 4.781, 4.782, 4.783, 4.783, 4.785, 4.785, 4.785, 4.788, 4.788,
17895 4.789, 4790, 4.7905 4.790, 4791, 4791, 4791, 4792, 4.792; 4795, 4-797» 4799
4.801, 4.805, 4.806, 4.808, 4.809, 4.810.

With this tabular arrangement we can easily obtain such
characteristics of the observed distribution as range, mode or
most frequently occurring value, and median or middlemost
value, of the permuted variable.

Naturally we can present such a permuted series of mag-
nitudes graphically in numerous ways, only one of which is
given by way of illustration in Fig. 24.

In a similar way a set of observations representing measure-
ments of several characteristics on each of several things
may be arranged in tabular form by permuting one of the series
of observations in ascending order of magnitude and then
tabulating the corresponding values of the associated char-
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acteristics. Table 7 shows two such tabulations, there being
in each case two quality characteristics.

Table 7-a gives the observed current I in amperes through
a certain kind of carbon contact as the voltage E is changede
This is the everyday type of observed relationship presented
in the customary tabular form in which one of the series of
measurements, in this case voltage, is permuted in ascending
order of magnitude.

TaBLe 7.—TaBuLarR PRrESENrarioNn or RELArionsuip

Table 7-a Table 7-4

Voltage £ | Current I | Volume in Area in
in Volts in Amperes | Cu. Cm. Sq. Cm.
3 0 03 09 o 667
6 o o7 19 o 528
9 o 11 39 0 538
12 o 1§ 45 o 778
15 o 19 46 o 27
18 0 24 4 6 o §43
21 0 29 4 8 0 792
24 o 34 49 0 Oy
27 0 39 49 o 694
30 0 4% 51 o 804
33 o 30 66 o 772
36 o 5% 78 o 706
39 o 62 96 o 750
42 o 69 11 7 o 496
45 0.76 13 9 0 591
48 o 86 16 2 o 716
5t ° 93 179 o 771
18 2 o 489

19 o o 811

19 3 o 792

19 8§ o 803

26 8 o 664

44 8 o 718

Table 7-4 gives the measurements of two quality charac-
teristics of each of twenty-three different kinds of granular
carbon. In this case the series of observed values of the
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volume of the pores is permuted in ascending order of mag-

nitude.

The corresponding customary graphical representations

-of such sets of data are presented in Fig. 25.
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In Fig. 25-a, there can be little doubt that the current is a
function of the voltage E, although neither the tabular nor
the graphical presentation gives the relationship quantitatively.
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In Fig. 25-4, there is a definite question as to whether or not
the two characteristics are related at all.
Now suppose we were to present in a similar way the
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distribution of 1,370 observed values of depth of sapwood
given in Table 4 and also the relationship between depth of
sapwood and depth of penetration. To do this would require
an excessive amount of space. To get around this difficulty
of presentation when the number of observations is large,
customary practice calls for the grouping of the original data.

2. Presentation of Grouped Data

We usually divide the range covered by a frequency dis-
tribution of observations into something like thirteen to
twenty equal intervals or cells, the boundaries of which are so
chosen that no observed value coincides therewith, thus
avoiding uncertainty as to which cell a given value belongs.
The number of things having a quality X lying within a cell
is termed the frequency for that cell; in a similar way, the
ratio of the frequency of a given value of X to the total number
n of observations is termed a relative frequency. The series of

TaBLE 8.—DistriButioN oF DEPrH or Sapwoop

Cell Cell
Midpoints Frequency Midpoints Frequency
in Inches in Inches
1o 2 34 151
r3 29 37 123
16 62 40 82
19 106 43 48
22 153 46 27
25 186 49 14
28 193 52 5
31 188 (3K 1

frequencies and of relative frequencies constitute frequency
and relative frequency distributions respectively. The dis-
tribution of depth of sapwood can in this way be reduced to
the form shown in Table 8. By thus grouping the original
observations into cells, we secure a tabular presentation
much simpler than that originally given in Table 4, but in
the process we have slightly modified the original data.
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By grouping, we get an improved picture of the clustering
of the observed values about a central value somewhere near
the cell whose midpoint is 2.8 inches, as is shown in Fig. 26.
Ia the first diagram the black dots represent ordinates pro-
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portional to the corresponding cell frequencies, the ordinate
for a given cell being placed at the midpoint of that cell. If
we join these ordinates by a broken line, we get the frequency
polygon. The method of obtaining the frequency histogram is
clearly indicated by the figure itself. An ordinate in such
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graphical presentations is termed a frequency, meaning thereby
the frequency of occurrence in the associated cell.

We may plot as the ordinate at a given value of abscissa
the total number of observations having a value equal to 8r
less than that of the given value of abscissa. In this way we
get the cumulative distribution, cumulative polygon, and cumu-
lative histogram also shown in Fig. 26. These are often termed
ogives. It is perhaps a matter of personal judgment depending
upon the situation in hand as to whether the tabular or the
graphical presentation of the frequency distribution of Table 8
is the more desirable.

Let us next try to present the data of Table 4 in such a
way as to indicate whether or not there is any rclationship
between the two quality characteristics, depth of penetration Y
and depth of sapwood X. In general, applying the same
methods as those used above to obtain the reduced frequency
distribution, we get the correlation table or scatter diagram of
Fig. 27. The number of poles having values of depth of
sapwood and depth of penetration lying within a given rectangle
is printed in that rectangle.

If we were to erect a parallelepiped on each rectangle
with a height proportional to the number in this rectangle,
the resulting figure would be a surface histogram. We might
also construct a surface polygon in a manner analogous to that
used in constructing the frequency polygon.

What does the table or chart shown in Fig. 27 tell us about
the relationship between the two variables therein considered?
One thing is certain—the distribution of values of penetration
in a given column corresponding to a given depth of sapwood
depends upon the depth of sapwood. *In other words, knowing
the depth of sapwood, we have some information about the
depth of penetration. We shall be content, therefore, to say
for the present that these two qualities appear to be correlated
and that, in general, the depth of penetration appears to be
greater, the greater the depth of sapwood. Thus the table or
chart of Fig. 27 does tell us something, but what it tells is
qualitative and not quantitative. For example, it does not
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tell us how close a relationship exists between the two
qualities.
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3. Choice of Cell Boundaries

The choice of from thirteen to twenty cells is to a large
extent empirical. Experience has shown that, when the
data are grouped in this way, it appears possible to retain most
of the essential information in the ungrouped data. To take
a larger number of cells often confuses the picture and, in
particular, emphasizes sampling fluctuations, the significance
of which will be considered later. In general, other things being
equal, the outline of the frequency distribution is more regular
the smaller the number of cells. This is illustrated by the two
frequency distributions of the data of Table 4 shown in Fig. 28.
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4. Conclusion

Both tabular and graphical presentations of original
ungrouped data are cuambersome and often require a prohlbmve
amount of space, particularly when there are a large number of
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F16. 28.—Errect oF CLAsSIFICATION ON GRAPHICAL REPRESENTATION.

observed values. Grouping of raw data materially reduces
the space required and makes possible a better picture of the
observed distribution whether in one or more dimensions,
although the data in this form are not readily susceptible of

causal interpretation.



CHAPTER VII

PrEsSeNTATION OF DaTa BY MEANS OF
SimpLE FuNcTIONS OR STATISTICS

1. Simple Statistics to Be Used

Table g presents for ready reference a list of those functions
or statistics which we shall consider, the ones marked by an
asterisk being the most important in the theory of quality
control.

Tasir g.—CommonLy Usep Funcrions or StaTistics

Fraction
‘ Mecasures | Measures of | Measures | Measures of
within Measures of . . X
. P of  |Lopsiiedness | of Flatness| Relationship
Certain | Central Tendency . . . .
Lamnt Dispersion| or Skewness |or Kurtosisjor Correlation
" S
*Fraction| *Arithmetic mean | *Standard| *Skewness | *Flatness | *Correlation
defective X deviation, k B2 coefficient
P a r
Maximum 4 Minimum|  Vuriance Correlation
2 a? ratio g
Median Mean
deviation
Mode Observed
range
1]

2. Fraction p Defective or Non-Conforming

This simple measure of quality was described in Chapter IV
of Part II as the fraction of the total number of observations
lying within specified quality limits.

71



72 ECONOMIC CONTROL OF QUALITY

3. Arithmetic Mean X as a Measure of Central Tendency
By definition, the arithmetic mean X of # real numbers,

Xl,X2,...,Xi,...,Xn,iS -
XX,

o NNt ANt X ST (1)

An approximate value for the mean is often obtained
from the grouped data as indicated in Table 10 which gives
the 1,370 observed depths of sapwood grouped into 16 equal
cells. The mean value obtained in this way will not, in general,
be equal to that given by (11). For example, the mean value
from the grouped data in Table 10 is 2.914 inches, whereas
the mean obtained from (11) is 2.9oo inches.

TasLr 10.—CALcuLaTION OF Arrrumrtic MEaN From Groupep Dara

Mid-Cell Value Deviation * Observed
in Inches in Cells from & Frequency Xy
X ¥
10 [ 2 o
13 I 29 29
16 2 62 124
19 3 106 318
22 4 153 612
25 ] 186 930
2 8 6 193 1,158
31 7 188 1,316
3 4 8 151 1,208
3.7 9 123 1,107
4 © 10 82 820
43 1t 48 528
46 12 27 324
49 13 <14 182
512 T4 . 5 70
§s 15 1 15
z 1,370 8,741
v
Wy = iz = —B-Zjl = 6.380292

Yy 1370
m = units per cell = 0.3 inch
Arithmetic mean X = 6 + myum = 1.0 + 1.914088 = 2.914088 inches

* The origin 6 is the mid-cell value of cell No. o.
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4. The Standard Deviation ¢ as a Measure of Dispersion

Given a set of # real numbers, X7, X, ..., Xi, ..., X,
the standard deviation ¢ of this set about its mean value X is,
by definition,

n . n ; n / n
S (X - Y Tx2  XIX A
i-1 (=1 i=1 » =1 =0
o= = —z—»—~+.\'-=\/—-.\'~. (12)
n n n n

The exact value of ¢ can easily be obtained from (12) although
this method of calculation introduces a prohibitive amount of
work when the size 7 of the sample is large. For this reason
as in the case of the average, we make use of the grouped data
and calculate o as indicated in Table 11.

TaBLE 11.—CaLcuLArioN OF THE S1ANDARD DEviATION FROM THE GROUPED DaTa

in Inches . quency 4y Y
X y

1o o 2 o o
3 I 29 29 29
16 2 62 124 248
9 3 106 318 954
22 4 153 612 2,448
25 5 186 930 4,650
2 8 6 193 1,148 6,948
31 7 188 1,316 9,212
34 8 151 1,208 9,664
37 9 123 1,107 9,963
4 0 10 82 820 8,200
43 11 48 528 5,808
4 6 12 27 24 3,888
49 13 14 182 2,366
§2 14 5 70 980
55 15 1 15 224
b . 1,370 8,741 65,583

m = unitsyper cell = 0.3 inch

IXy 8741 i

141 = Ey = 1370 = 6.380').9-

X% _ 65583
1Mz = Sy = 1370 = 47.870803

pe = pp — yn? = 7.162677
o = muy® = 0.802895 inch
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Obviously, a small standard deviation usually indicates
that the values in the observed set of data are closely clustered
about the arithmetic mean; whereas, a large standard deviation
indicates that these values are spread out widely about the
arithmetic mean. For the time being it must suffice to picture
the significance of this measure of dispersion somewhat after

FREQUENCY

VARIABLE

F16. 29— How THE Stanparp Deviation o Inpicates Disrersion.  Two
DistriBuTiONs DIFFERING ONLY IN STANDARD DEVIATION.

the manner indicated in Fig. 29 which shows two continuous
distributions of the same functional form, differing only in
standard deviation.

5. Skewness k

The particular statistic which we shall use most extensively
as a measure of the skewness of a distribution of # values of X
is designated by the letter £ and defined by the expression

(X - X)3 X3 3XE g
t=1

n n n
k= 35 = 3 > (13)

XX - X)?
n

where X is the arithmetic mean and ¢ is the standard deviation
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of the # values of X. Of course, # may be either positive or
negative. If the distribution is symmetrical, k is zero, but it
should be noted that the condition % = o is not sufficient for

FREQUENCY

VARIABLE

F1c. 3o0—lLLusTRATING Usk or % As . MEASURE OF SKEWNESS

symmetry. Fig. 30 shows two continuous distributions of the
same functional form, differing only in skewness.

6. Flatness ' B2

The statistic B2 used as a measure of the flatness of the
distribution is defined by the expression

n n n
X4 D I Xz
”‘ B 1=1 Li=1 —21=1 =
2 (X:—X) —4X T 6T —3X!
t=1 n 2 n n n
B = n : 5,2 - gt ’ (!4)
TX-X
4-1( = X) .

where the symbols used are those previously introduced.
Fig. 31 pictures three symmetrical frequency distributions
differing only in the degree of flatness.

1 Also called kurtosis.
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7. Calculation of Statistics

Let us see how simply the calculation of the four above-
mentioned statistics may be carried out. For convenience
we introduce a new term, the moment of a distribution. By
definition, the jth moment, 1u;, of a set of # values, Xi, Xz,
.« .y Xiy ..., Xy about the origin from which the values are

measured is
n

zx/
. 1=1
IF'] = "—“ . (15)
>
v
2}
W
>
(e}
Sk
[
'S
1 1 J
VARIABLE
Fi1G. 31.— ILLusTrATING Usk oF B2 As A MEASURE oF FLAINESS oF DisrriBuition,

Similarly, the jth moment of this same set of numbers about
the arithmetic mean X is

n
S(Xi-X)
pj = —— (16)
n

It may readily be seen that the fortnulas for standard deviation,
skewness, and flatness may be greatly simplified by expressing
the results in terms of the moments of the distribution, as
shown in the lower part of the data sheet of Table 12. The
necessary computations for finding the four statistics for the
distribution of depth of sapwood are also shown in this data
sheet.
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TaBLe 12.—TyricaL ComputaTiON SHEET

77

Subject Date 2/21/30
Depth of Sapwood Calc. by MBC |
1n inches Checked MSH
Cell Cell Deviation | Observed Frequency
Mid- | Bound- | 1n Cells | Frequency ¥ X yX? X3 yX14 mn
point ary from o, X v Per Cent
-| o 8s0
10 [ 2 o o o o o 15
1 150
1.3 T 29 29 29 29 29 2 12
1 450
16 |~ —— 2 62 124 248 496 992 4 53
1 750 AN
19 |[—— 3 100 318 054 2,862 8,586 7 74
2 050 —
22 4 153 O12 2,448 0,702 39,168 1117
2 350 .
25 5 180 030 4,650 23,250 116,250 13 58
--1 2 650 -
z 8 |[—— - [ 193 1,158 0,048 41,688 250,128 14 09
2 950 - — =
31 — 7 188 1,316 9,212 64,484 451,388 13 72
3 250 — - —
34 |-~ —— 8 151 1,208 0,004 77,312 018,490 11 02
— - 3 550
317 - 123 1,107 9,903 89,007 807,003 8 o8
-1 3 8s0 —_— BRI —
4 0 10 82 820 8,200 82,000 820,000 5 00
——-| 4 150
4 3 [N 48 528 5,808 03,888 702,768 3 so
- - 4 450 |- —
40 e 12 27 324 3.888 46,656 559,872 197
- 4 750 |—— - -m—

49 13 14 182 2,360 30,758 399,854 1 02
—— | 5 050 | -—— —_ — -
5 2 o 14 5 70 080 | 13,720 102,080 o 36

5 350 |- -—— R s
55 [— — 15 1 15 225 3,375 50,025 o o7
5 050
z 1.370 8,741 05,583 | 549,977 | 5,017,230
sox 8 m = unmits per cell =0.3
X _ 8741 _
My = ¥y T370 2_380292
__ TyX? _ 05583 _
W = Yy = 1370 47 870803
_ ZyX3 _ 540077 _
Mg = Sy T 1a70 o 401443006
_ XyX4 _ 5017230 _
=5 370 = 3002 218248
My = Mz — 112 = 47 870803 — 40 708126 = 7 162677
M3 = 143 — 31My 1K + 21H53
= 401 44£(»(: — 016 280104 + 510 4504_(:_:_ = 4 613423
He = 144 — 41M1 143 + 0112 ety — 1t
= 3662 218248 — 10245 205030 + 11002 384081 — 4971 454567 ,
= 137 851832
X =o-+muy =104 3(6 380202) = 2 914088
o = muzli = 0.3(2 676318) = 0 Bo2895
M2 _ 4 613423 _
k= ‘,2-,19 19 169601 0—240(’63
Me _ 137 851832
== 2L 20 00 = 2 68606
P2 = Ui = 51 joseqs - 20860004
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A. Errors of Grouping.—It will be seen that all of the com-
putations in the illustrative example make use of grouped
data, thereby introducing a source of error. The question
naturally arises as to whether or not an engineer should attenfpt
to correct the moments thus obtained by some of the formulas,
such as those of Sheppard, presented in almost every good
text on statistical theory.

We shall consider three reasons why it seems likely that
little is to be gained through the use of such corrections, at
least in the class of problems considered in this book. These
reasons are:

(@) The actual limitations imposed in the development of
the formulas for correcting the moments necessitate sharp dif-
ferentiation between those distributions to which their applica-
tion 1s justified and other distributions; and yet it is not
feasible to formulate rules which can be applied intclligently
to differentiate between these two classes of distributions
without a full knowledge of the somewhat involved theory
underlying the corrections.

(6) The magnitudes of such corrections for the statistics
are small, compared with the sampling errors of the statistics
thus corrected, unless the sample size is very large, it being
assumed that the interval of grouping is small compared with
the maximum observed range of variation, as is the case when
we use from 13 to 20 cells. Hence, in gencral, the corrections
do not add much from the viewpoint of causal interpretation.

(¢) The corrected moment may in some cases differ more
from the moment obtained from the raw data than does the
uncorrected moment. As a case in point, the standard deviation
of the 1,370 observed values of depth of sapwood is 0.802§55
inch as determined from the ungrouped data. The uncor-
rected moment obtained from the grouped data is 0.802895
inch; whereas the value of this moment corrected by Shep-
pard’s formula is 0.798211 inch. Hence we see that in this
example the correction factor does not correct. This situation
may arise quite frequently, since the distribution of points
within a given cell often does not satisfy the conditions tacitly
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assumed to exist in the applications of Sheppard’s correction.
Obviously, therefore, if one is to be sure that he has attained
the correct moments for a given distribution, he must carry
out the calculations of these moments from the ungrouped data.

Since it is difficult to determine when the corrections
should apply, since the corrections are usually small compared
with the sampling errors of the moments, and since the cor-
rections may not correct, it seems that little can be gained
by applying the customary correction factors.

B. Number of Figures to be Retained.—It will be noted that
in the calculation of the statistics, the numerical work is
carried out to more places than may often be used in the
final form of presentation. The reason for doing this will
become clear as we proceed, but one or two instances showing
the necessity for such a procedure may not be out of place
at this point.

In the problem just considered, suppose that we wish to
determine the crror of the average. In general, this will be
expressed in terms of the observed standard deviation ¢ which

. . . ag
in turn has its own error customarily taken to be v where
=n

n is the number of observations. Since the number of figures
which we wish to retain in the average depends upon the
crror of the average, we must know this error before we can
decide how many figures to retain. The calculation of this
error, however, involves the use of the average itself. Hence
we must carry enough figures in the average during the process
of calculation of its error so that the final number of figures
retained in the average will not be influenced by the number of
figures retained in the calculation of the standard deviation.

It is obvious that the same line of reasoning applies in
determining how many figures to retain in the standard
deviation.

In the general case, starting with a series of observed
values, our interpretation of the data involves the use of
certain statistics expressed as symmetric functions of the data.
Before we can tell definitely how many figures to retain at a
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given stage of the calculation, we must have completed all the
calculations. Obviously we cannot carry an indefinitely large
number of figures. The detailed calculations carried oyt_in
this book will serve to show what we have found to be satis-
factory practice. It does not appear feasible, however, to lay
down simple, practical, and infallible rules.

8. Measures of Relationship

As engineers, we are accustomed to think of two or more
things as being related when we can express one of them as a
mathematical function of the others. However, in the scatter
diagram, Fig. 27, showing the observed values of depth of
sapwood X and depth of penetration Y, we see that for a
given value of X there are several values of Y so that these
two quantities do not appear to be related in a functional way;
although there does appear to be some kind of relationship
between them. The knowledge of the depth of sapwood
gives us some information about the depth of penctration.
To measure this kind of relationship, we make use of the
correlation coefficient.

By definition the correlation cocfficient r between u pairs of
values of X and Y'is

D WY
1-1 _ X Yv
. —. (17)

rxy =

Ox0y

The method of calculating 7 is illustrated in Table 13.

We shall see later that the value of » must lie between + 1
and — 1. The significance of » must be developed as we
proceed.

9. Other Statistics

Let us first consider measures of central tendency other
than the arithmetic mean. By definition, an average of a
series of 7 values of a variable is a number greater than the
least and less than the greatest when all of the values of the
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TaBLE 13.—MEeTHOD OF CaLcuLATING CoRRELATION COEFFICIENT

X = Depth of Sapwood. Y = Depth of Penetration

@@ @ M@ |6 @ Q@6 @
X1Y | m | mXY || X Y | m | mXY X | Y | nn | mXY
10|07 1 o701 31]07]| 10 2170|4034 § 68 oo
10 1 1 00 10| 22 68 20 37 1 14 Bo
13| 40 | 161 20 i
1.3]04| 1 52 16| 42 | 208324310} 4 | 17120
o7 ]| 15 13 65 19| 36 | 212 04 1310 4 22 36
1o 12| 1§60 22| 24 | 163 68 16 7 48 16
13 1 1 69 25 6 | 46 50 19| 7 57 19
28| 7| 6o 76 221 6 56 76
16|o0.4 2 1 28 31 I g 61 25 7 75 28
o7 | 11 12 _gz 28] 4 48 16
Tro| 33 52 8o 31 5 66 65
:g 11 2228 34 ?Z ]’2 SZCI;) 34| 3 43 86
! § | 1280 1 ? 22 128 18 37] 1 15 91
19|o7 |13 1729 po2s 152 32 6o 1 22
10| 41 77 9o 19| 22 |1g2 1214 1 73 3 ,:} 94
13] 36| 88.92 22 27 {201 66 16| 5 | 368
16| 14 4256 25| 11| 93 50 19| 3 | 2622
19| 2 7 22 28 12 | 114 29 22) 3 | 3036
31 2 21 o8 25| 1 11 5o
2204 1 o 88 34 2 23 12 28 8 6
o7 | 11 16 94 — 31 g 32 7%
10| 42 92 g0 (| 37107 1 2 59 34 2 31,13
1 3] 48 | 137 28 10| 10 37 oo 371 1 17 02
16| 39 | 137 28 13] 13 62 53 1ol 2 36 80
19| 10| 41 80 16| 21 | 124 32 -
22 2 9 68 19| 24 (16872 49110 1 4 90
e — 22| 28 | 227 92 16 23 €2
25104 1 1 oo 2 5| 11 | 101 7§ 19 "13 g;x
o7 | 14 24 50 2 8 7 72 52 22| 1 10 78
I o o 12§ 00 31 4 45 88 25 2 24 50
T3 59 | 9175 34| 4| 5032 281 2 | 2744
16 34 | 136 00 31 1 15 19
ol 19| 9251 0lo7]| 2 5 60 371 2 36 26
212 7 38 50 10 2 8 oo 43| 1 21 07
25 2 12 50 13| 10| 5200 -
. 16| 10 6400|5210 1 § 20
28 C]’g ?‘7’ Ié‘ Zg g 9 | 68 40 310 1 16 12
I e 836 22 15 | 132 00 37| 1 19 24
lg iS 'Ivof o 25| 12 | 120 00 40| 1 20 80
1o 22 | 117 04 2 tli 14 156 :o 461 1 23 92
22| 18 | 110 88 3 A P FYI 13 75
261 12 84 0O
2 8 2 15 68
n = 1370 __
ImXY = 6,765 77 XY =4 637654 !
Eﬂl."y
———— =4 938518 IxOy = 0 498779
b ¢ —_——
.;ﬂpx)':_ Xy
y=_" _ 4 938518 — 4 637654

=0 603201
Tx0Oy © 498779
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variable are not equal and equal to the common value of the
variable when all of the values of the variable are equal.
Therefore, the arithmetic mean is only one of an infinite number
of measures of central tendency. Typical means often usett in

.. . maximum X + minimum X
characterizing data are the median, ; ,

and mode. Naturally, we may expect the different kinds of
averages of a series of numbers to differ among themselves.
Just as an example, we give below four averages for the series
of fifty-eight observed values of the charge on an electron.

Median = 4.785 X 10710 e.s.u.
Max. + Min.
— T =475 X0 10 es.u.

Mode = 4.779 X 10710 es.u.

Arithmetic mean = 4.780 X 10710 e.s.u.

Next, let us consider some measures of dispersion, skew-
ness, and flatness other than those prev1ously glven A
measure of dispersion very commonly used in engineering
work 1s the mean deviation p defined for the case of # values
of X by the expression

n

PIER Y

p= -—”—~, (18)

where, as usual, the symbol | | represents the absolute value
of a quantity. In the same way, any even moment of a dis-
tribution about its mean is a measure of dispersion, as is any
odd moment of absolute values of the deviations from the
mean. Hence, there is an indefinitely large number of possible
measures of dispersion of this kind. Furthermore, if we turn
to any standard text on statistical theory, we shall find other
kinds of measures of dispersion, such as symmetric ranges, of
which there is also an indefinitely large number.

In the same way, we may set up an unlimited number of
different measures of skewness and flatness. Obviously, there-
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fore, we need to have some general principle to guide us in
choosing measures of such characteristics of a distribution of
data as the central tendency, dispersion, skewness, and flat-
ness.

One basis of choosing between two statistics as a measure
of a characteristic of a distribution is the difference in the
amount of labor involved in their calculation. As a case in

. . maximum X 4 minimum X
point, such measures as the median, 2 ,
and mode, can readily be determined by observation of the
observed frequency distribution; whereas, the calculation of the
arithmetic mean involves considerable labor. It is believed,
however, that the cost of the manual labor involved in the
analysis of engineering data is for the most part a very small
per cent of the cost of taking the data. If we can get more
information out of one measure than we can out of another,
the cost of analysis will not, in general, be a deciding factor.

Casting about for some more fundamental basis of choice,
we take note of the fact that it is usually desirable to have a
statistic which 1s an algebraic function of the data. It is
obvious that these functions must be symmetric since they
must be independent of the order in which the data were
taken. It follows from algebraic theory that the chosen func-
tions must be expressible in terms of what are generally known
as sum functions, because all symmetric functions are so
expressible. Now, the sum functions are defined as

Si=X1 +X: +...4+X; +...+ X
So= X124+ V" 4+ ..+ X2+ 0+ X°
. . . . . . . . .- (19)
S =X/ +X + L+ XY L+ X

”
|

. N . T
Obviously, -nJ is the jth moment ;4 of the distribution about

the origin.
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The statistics X, o, &, B2, and 7 satisfy the condition of
being symmetric functions of the data, but stiii we mras
try to find out if they are the most useful symmetric functions.
In the remaining chapters of Part II, we shall justify the=use
of these five statistics to the extent of showing that they go a
long way towards cxpressing the total amount of information

contained in a set of data.



CHAPTER VIII
Basis ror DeTErRMINING How To PRESENT Data

1. The Problem

Let us consider again the distribution of the 1,370 observed
values of depth of sapwood. So far as this or any similar
sct of data is concerned, we assume that one observation
contributes just as much information as any other in the same
set. The total information is given by the observed distribution.
If, then, we are to present the total information, we must give
the original frequency distribution. For reasons already con-
sidered, however, we find it desirable to condense the original
data insofar as possible by calculating certain statistics. In
the previous chapter we showed how to cffect this reduction
and illustrated the method by application to the distribution
of depth of sapwood. The information contained in this dis-
tribution, reduced to the form of statistics, is given in Table 14.

TasLr 14—~InrForMaTION IN FORM OF Sraristics

Average X = 2.91471 inches
Standard Deviation ¢ = 0.8029 inch

Skewness £ = 0.2407
Ilatness B2 = 2.6870
Number of Observations » = 1,370

If the statistics of Table 14 actually contain the, total
information in the original scries of observations, it should
be possible to reproduce this distribution from these statistics.
Obviously, itis not possible to do this, and therefore the statistics
do not contain all of the information. However, they do con-
tain a surprisingly large percentage, as we shall now see.

85
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Table 15 gives the results of two attempts to reproduce the
original distribution from the observed statistics. The second
row is the distribution obtained from the average and standard
deviation alone, while the third row is that obtained using,
in addition, the skewness of the original distribution.

TaBLe 15.—SHowing How Much INrormarion 1s CONTAINED IN A
Frw SimpLE SraTisTics

1 3)1 o[ o[z 2|2 5{2 8|3 T|3 4|3

o
2

29| 62{106{153{186(103(188(r51{123] 82| 48| 27| 14| 5 1 4

Cell Midpoint 0 4/0 7|t 4 0|4 3|4 6|4 o|s 2[5 5

Observed Frequency | 6 | o

Normal Law Fre-
quency, 1| 5| 12] 27| 53] 02|138]170|202|100]170[127| 82| 40| 23] 10| 3 | 1

Sccond  Approxima-
tion Frequency . o|o ol 25| 55| 90|149(189(207(103(150{116| 77| 46| 25( 13| 6 | 2

That the approximate or theoretical distribution obtained
through the use of the average X, standard deviation o, and
skewness k is closer to the observed distribution than is that
obtained through the use of only the first two of these statistics
can be seen quite readily from Fig. 32.

® OBSERVED POINTS

200 ~
———— SECOND APPROXIMATION
\ -—-NORMAL LAW
150 |-
”n
w
J
o
o
w
O 100 |+
«
w
o
3
=)
4
S50}
[«] P [ 1 3 1 1 4 1 1 =
o [oX) .0 15 20 25 30 35 40 45 50 55

DEPTH OF SAPWOOD IN INCHES

F1G. 32.—SIGNIFICANCE OF AVERAGE, STANDARD DEviATION, AND SKEWNESS.
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The surprising thing is that a knowledge of the average
and standard deviation alone enables us to reproduce so
closely the observed distribution in this case. Here, the
approximation is so good that it is somewhat doubtful whether
or not, from the viewpoint of presentation alone, we can attach
any practical significance to the increase in the amount of
information given by the introduction of the skewness over
that given by the average and standard deviation alone. In
fact, engineers are usually interested in knowing only the
number of observations lying within certain relatively large
ranges, such as the average X plus or minus two or three times
the standard deviation ¢. Table 16 presents the observed
percentages of the 1,370 observations lying within these ranges
together with those estimated from a knowledge of the average
and standard deviation. A knowledge of & as here used adds
nothing to the precision of our estimate of the number of
observations lying within these or any other ranges symmetric
in respect to the average.

TasLe 16.—PERCENTAGE or Onservarions Lving wirdIN Particurar Rances

Range Range Range Ruange

\ £0 67450 Ntio X £+ 20 N2 3o

Estimated, Per Cent . 50 00 68 27 95 4§ 99 73
Observed, Per Cent . 47 45 66 57 95 91 99 93
Difference, Per Cent ... . 245 2.70 o 46 0 20

In the next few paragraphs we shall see how these simple
statistics often enable us to approximate very closely the
original distribution. In general, we shall find that the infor-
mation contained in statistics calculated from moments
higher than the second depends to a large extent upon the
nature of the observed distribution; therefore, these statistics
are somewhat limited in their usefulness. The really re-
markable thing is that so much information is contained in
the average and standard deviation of a distributior,



88 ECONOMIC CONTROL OF QUALITY

The specific problem to be considered is: Given a series
of numbers, X1, Xz,. .., Xi,. .., Xn, representing an observed
distribution of some quality characteristic X such as any of
those previously discussed, let us try to find some function
f(X, X, o, k, B2) of X and the four statistics calculated from
the observed distribution such that the integral

b
f f(‘Y) X) o, k) ﬁ'.’)d-Y (20)

of this function from X = a2 to X = 4 gives approximately the
total number of observed values lying within this same interval.
When the approximation is good, we can say that the statistics
contain practically all of the total information in the original
distribution. In fact, as already noted, we can say that these
statistics contain most of the information of practical en-
gineering value when the approximation
X {20

f(‘\’) A—,) a, ka Bl)dX (2])

X —z0

is good, where, as before, the values of 2 with which we are
usually most concerned are 0.6745, 1, 2 and 3.

Common sense tells us that the degree of approximation
in a given case will depend upon the function /. Of course,
it is desirable to be able to estimate the amount of information
contained in the statistics independent of the function f. For
rcasons which will be considered later, we find that under
the state of control of manufactured product the function f
which is best in the majority of cases is the same for most
quality characteristics. Hence, what we shall do is to show
how much information is contained in these statistics for this
limiting type of distribution funttion which is approached as
we approach the state of control. We shall then review the
work of the Russian mathematician, Tchebycheff, which makes
it possible for us to see how much of the total information is
contained in the average and standard deviation of a distribu-
tion independent of its functional form.
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2. Statistics to be Used when Quality is Controlled

When the number # of measurements of some quality X
have_been made under the conditions of control, we find in
general that the function f in (20) can be assumed to be one
or the other of the following two forms without introducing
practical difficulties:

r?

Sflx) = - \/27r ¢ (22)

or

i IR

where x = X — X.

Under the conditions of control, it may then be assumed
that the integral of either one or the other of these two functions
over a given range should give approximately the number of
observed values within the corresponding range, particularly
when the number 7 of observed values is comparatively large.
We need, therefore, tables of valucs of the integrals of these
functions for # = 1. The intcgra] of (23) is

ff(’f)dar— f ¢(”)dz=f v i ’d"— [1—(1-»:2);;']=F,(z)—kF,(:), (24)

where F(2) is the integral of (22), and 2 = . Tables A and B
g

give the functions Fi(z) and Fa(z) respectively.

Now we are in a place to see how the approximations
given in Table 15 were obtained. The method is illustrated
in detail in Tables 17 and 18 derived from approximations
(22) and (23) respectively. Corrected moments were used in
Tables 17 and 18 and Fig. 39.

We have already noted~that % contains some information
not contained in the average and standard deviation.in the
sense that the use of all three gives the closer of the two approx-
imations to the observed frequency distribution of depth of
sapwood. If, however, we are interested in the number of
observed values within a symmetrical range about the observed
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1 2z
TasLe A—VaLuks oF Fy(z) = = fe""’z 4
Vardy

2 |Fi@ |z |FE )| = @] z |[FE| =z | FE | z | Fi() z Fi(z)
00| oocoo| 45| 1737| 90| 3160|1 35| .4115|1 80| 46412 25| 4878(2 70| 4966
.o1| 0040 .46 1773] 91| 3186|1 36 41311 81| 46492 26[ 48812 71[ 4967
.o2| ooBo| 47| 1808| 92| 3212|1 37| 41471 82| 4656]2 27| .4884]2 72| 4968
03| o120] 48] 1844| 93] .3238|1 38] 416201 83| 4664]2.28] 4887]2 73] 4969
04| o160 | 49| 1880| 94| 320411 39| 41781 84| 4671|2 29| 48902 74| 497C
os| o200| 50| 1915| 95| 3290|1.40] .4193 |1 85| 46792 30| 4893|2 75| 4970
06| 0239 51| 1950| 96| 3315|1 41| 4208 |1 86| 46862 31| 48962 76| 4971
07| 0279 52| 1985 97| 33401 42| 422211 87| 46932 32| 48992 77| 4972
.08| o319 53| 2020] 98| 33651 43| 4237|1 88| 4700]2 33| .4901 |2 78| 4973
.09 |.0359 | 54| 2054] 99| 3389{1.44] 42511 8yl 47062 34| 4904|2 79| 4974
.10] 0399 ] 55| 2089i1 oo 3414|1.45|.4265(1 90| 4713|2 35| 49062 8o| 4975
11| 0438 561 2123|1 or] 3438]1 46| 42791 91| 4720|2 36] 4909|2 81| 4975
12| og78 | 57| 2157 1 02| 346201 47| 42021 92| 4726]2 37| 4911|2 82| 4976
13| o517| 581 .2191|1 03] 3485|1 48(.4306(1 93| 4732|2 38| 4014|2 83| 4977
14| 0557] 59| .2224 1 o4 35081 49| 43191 94| 473812 39| 4916[2.84] 4978
15| o596 | 60 2258|1 o5| 35321 50| 4332|1 95| 47442 40| 49182 85| 4978
16| 0636 | 61| 22911 06| 35551 51| 4345|1 96| 4750(2 41| 4920|2 86| 4979
171 0675 62 232401 o7 3577|F 52| 43581 97) 4756|2 42| 49232 87| 4980
18| o714 631 .2357|1 o8| 3599|1 53 a370[1 98| 476212 43| 4925|2 88| 4980
.19 0754 64 .2380]1 oy| 3622|1 54| 43821 99| 47682 44| 49272 89| 4981
.20 0793 | 65| 24221 10| 3644 |1 55 4395]2 00| 477312 45| 49202 90| 4982
21| . o832 66| 24541 11| 36651 56! 4406 |2 o1| 47782 46| 4931 (2 91| 4982
22| o871 | 67 248011 12| 3687|1 57| 44182 02| 478312.47| 49332 92| 4983
.23| ogro| 68| 251811 13| 3708]1.58| 4430]2 03| .4788]2 48| .4935]2 ¢3| 4983
24| 0949 | .69 | 25491 14] 372911 59| 4441 |2 04| 4793|2 49| 49362 94| 4984
25| 0987 70| 25811 15| 3749|1 60| 4452]2 05| .4798 |2 50| .4938]2 95| 4984
26 1026 71| 261201 16| 37701 61| 44032 of| 48032 51| 49402 96| 4985
271 1064 | 72| 26431 17| 379001 b2| 4474 (2 07| 48082 52| .4942]2 97| 4985
.28 1103 | 731 .2673]1 18| 3810(1 63| 44852 o8| 48132 53| .4943{2 98] 4986
29| 1141 | 74| 27041 19] 3830|1 b4] 4495]2 09| 4817(2 54| 49452 99| .4986
.30| 1179 75| 2734 |1 20| 3850|1 65| .4506 |2 10| 4822|2 55| 49463 oco| 4087
231 1217 ) 76| 27641 21| 38691 66| 451612 11| 43826|2 56| 49483 10| 4991
32| 1255 | 77| 27941 22| 3888|1 67| 452612 12| 483012 §7| 49493 20| 4993
33| 1203 78| 28231 23| 3907t 68] 4535)2 13| 483412 58] 495113 30| 4995
34| 1331 .79 28531 24| .3925(1 69| 4545|2 14| 48382 59| .4952|3 40| 4997
35| .1369 | .80 | 28821 25| 3944 |1 70| .4555]2°15| .4842|2 60| 4954|3 50| .4998
.36 1406 .81] 29111 26| 3962|1 71| 45642 16 4846]2 61| 4955]3 60| 4999
37| 1443 | 82 2939|1 27 398ofr 72{ 457312 17{ .4850 2.62] 49563 70| 4999
38| 1481 83| 296811 28| 3097|1 73| 4582]2 18] 4854]|2 63 49583 80| §o0O
39| 15181 .84] 29961 29| 4015[1.74| 4591 [2 19] 48582 64] 49593 9o| .5000
40| 1554].85( 3024]1 30| .4032|1 75| 3599|2 20| 48612 65| 4960[4 oO| .5000
41| .1591| 86| 3051|1 31| .4049]1 76| 4008 |2 21| 4866 ]2 66 44961

.42| 1628 87| 3o79|1.32| 40061 77| .4617|2 22| 48682 67| 4962

43| 1664 88| 3106|1.33].4083|1 78] .4626(2 23| 4872 (2 68] .4963

.44| 1701 | B9} .3133|1 34| 40091 79| 463312 24| 4875|2 69| 4965
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9l
TasLe B.—VaLuEes oF Fy(z) = — [1 = (1 —2)e—ti?
6\/21r

2| Fo(2) | 2 | Faz) | 2 | Fuo(z) | 2 | Fa(2) 2 | Fo@) | 2z | Fol2) | 2z | Fa(2)
00| 00000 | .45| 01857] .90 o586 |1 35| oBB48|1 Bo| 09597 ]2 25 08798]2 70| 07742
o1 |.00001 | 46 .01933| 91| 0sBys [t 36| 088go[r 81| ogsgol2 26| o8774(2 71| o7722
02| 00004 | 47| 02011 92| os98o|1 37| .08930|1 82| ogs84|2 27| 087492 72| 07702
.03| 00009 | 48| 02089| g3| 06066 |1 38| o8y70|1 83|.09576 |2 28| 087242 73| 07682
.04| 00016 | 49| .02168| 94| .06152|1 39| 0goo8 |1 84| 09568 |2 29| 08699 |2 74| 07665
05| 00025 | 50|.02248] .95 06236|1 40| 09og5 |t 85| 09559]2 30| 086742 75| 07644
0b{ 00036 51.02329] .96|.06320|1.41]| 090801 86(.09549 |2 31| oB6sol2 76| 07625
07| 00049 | 52| .02411| .g7| 06404 |1 42| .09115|1 87| .09539 {2 32| 086252 77| 07606
o8| 00064 | 53| 02494 .98| .06486|1.43| 09148 |1.88] o9527]|2 33| oB6oof2 78| o7588
09| ocooB1| 54| 02578 .qg| 065681 44/ .09180(1 89| .09516]2 34| 0857512 79| 07569
10| 00099 | 55| 0266211 oo| 06649 |1 45| .09211 |1 go| 095032 35| oB8550{2 80| 07551
11| oo120| 56| 0274811 o1 06729]1.46| .09247 [1.91| .09490|2 36| o8525|2 81| 07534
12| 00143 | 57| 02833|1 02| 06809 |1 47|.09269 |1 92| 09477|2 37| o8500|2 82| 07516
13| 00167 ] 58| 029201 o3| 068871 48] .09296 |1 93| .09463 |2 38| 08475|2 83| 07499
14| 00194 | §9| 03007 |1 o4] 06965 |1 49| .09322 |1 94| 09448 |2 39| 08450]2 84| 07482
151 00222 | 6o| 03095 |1 05| 07042 |1 50| 09347|1.95|.09433 |2 40| 084262 85| 07465
16] 00253 ] 61| 031831 06| o7118|1 51| 09371 |1 96| .09417|2 41| o801 [2 86| 07448
17( oo285| 62| 032721 o7| 07193 |1 52| 09394 (1 97| og4o1|2 42| 08376]2 87| 07432
18] 00319 | 63] 03361 (1 o8| 07267 |1 53| 09415|1 98| .09384 |2 43| 08352 |2 88| .07416
1yl 00355 | 64| 03450(1 oq 073401 54| ©9435|1.99|.09366 {2 44| 083272 89| 07400
200 00392 | 65| 0354011 10| 07412|1 55| 094542 00| 09349 |2 45| 08303(2 go| 07384
21| 00432| 66| 03631 |1 11].07483|1 §6|.09472|2 01| .09330|2 46| 08279 |2 91| 07369
22| 00473 67| o3721|1 12| 0755211.57| 094892 02| .09312|2 47| oB255]|2 92| 07354
23] 00516 | 68| o3812]1 13| 07621 |1.58 09505 |2-03| .09293 |2 48| 082312 93| 07339
24| 00561 | 64| 03904]1 14] 07689]1.50] 09519|2 04| 09273|2 49| 08207(2 94| 07324
25| 00607 | 70| 03995 |1 15| 07756 |1 60| 09533 ]2.05| 09253|2 50| oB183]2 95| ©7309
26| 00656 | 71| 040861 16| .07822]1 61 0954612 06| 09233 |2 §1| 081592 96| 07295
27| 00705 2| 04178 |1 17].07886 |1 62| 09557 |2 07| .09213 |2 52| o8136]2 97| 07281
28| 00757 73| 042701 18] o7950|1 63] 09567 |2 o8] o9192|2 53| oBr12|2 ¢8| 07267
29| oco810|.74| 04362 |1 19| 080121 64 0957712 og| OgI70|2 54| .08089 |2 99| 07254
30| oo865] 75| ©v4453 |1 20| 080731 65| .09585]2 10| O9149]2 55| .08066 {3 ool 07240
31( 00921 | 76| 04545 |1 21| o8133|1 66| 095922 11|.09127 |2 §6(.08043(3 10| 07118
32| 00979 | 77] 046371 22| o8192|1 67| 09599 |2 12|.09105 |2 §7| o8020|3 20| o7016
33| o10381.78| 04728 |1 23| o8250(1 68 oybog|2.13|.09082 |2 58] 0799813 30| 06933
34| 01099 | 79| 048201 24| 08306 |1 69| 09boB|2.14| ogobo|2 59| 0797513 40| 06866
35| o1161| 80| o49111 25| 08361 [1.70| 09612 ]2 15| .09037|2 60| .07953|5 50| 06813
36| or225] Br| osoo2|1 26| 084161 71| oyb14]2.16| oyoig|2 61| 07931|3 6o| 06771
37! or2g0] 82| o5093|1 27| 084681 12| 09616]2.17| .08991 |2 62| .07909 (3 70 739
38| 01356 | 83| o5183|1 28| o8520]1 73| 0yb616]2 18| 08967]|2 63].07888|3 80| ob714
39| o1424 | 84| 05274]1 29| 085711 74| 09616]2.19|.08943[2 64| .07866|3 9o .066g6
.40 .01493 | 85| 05363 |1 30| 08620|1 75| 09615 |2 20| .08919[2.65] .07845 |4.00] .06683
41| o1564| 86| .05453|1 31| 086681 76| 09613 |2 21| .08895|2 66| 07824
42| 01635 | 87| 055421 32| 087151 77| ogbro|2 22| .08871|2 67| 07803
43| o1708 | 88| 056311 33| o8760|1 78| 09606 |2 23| 0884712 68| 07782
44| 01782| 89| 057191 34| 08805 |1 79| 09602 |2 24| 08823|2 69| o7762
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TaBLE 17.—DistriBuTION OF DEPTH OF SaAPwoOoD CALCULATED FROM (22)

n =

1,370

RY

a

914088

Subject

Depth of Sapwood

Date 2/21/30

Calc. by MBC

¢ =0 798211 in inches Checked MSH
qul Cell Dne(::a 2 Differ Fre. Approxi- [Observed
Mid-| Bound- from ¥ (x/0) Fi(z) enc sency mate Fre-
point| ary v "v‘ */o ¢ quency Frequency| quency
025 | 2 6641 | 3 3376 | 0 4995 — —
o4 - - — — ——| o oolo 14 1
—-] 0 55§ 2 3641 2 9618 | 0 4985 — -——
o7 - T | © 0033 45 s
o 85 2 0041 2 5859 | 0 4952 |- - -
1.0 o oo87 11 9 12 2
115 1 7641 2 2101 | O 486§ —
13— o oly8 27 1 27 29
— 1 4% 1 4641 1 8342 | 0 4667 ——
16 e e — — | © 0390 53 4 53 62
— 175 11641 14584 [ 0 4277 | - o e
19 - - o 0072 92 1 92 106
2 05 | O BHy1 1 o825 | o 3605 — |
22 |/ e — O 1004 137 § 138 153
2 35 o §641 o 7067 | o 2601 |- - —
25 -1 0 1308 178 8 179 186
2 63 0 2641 |—0 3309 | o 1296 | -— — | —
2 8 —_— — 1 o 1476 202 2 202 193
2 9§ 0 0359 (40 0450 | o o180 |- -
31 |—— e e) 1451 ]()8 8 199 188
325 | o 33959 0 4208 | 0 1631 |-- - - - -—
34 — - -~ o 1240 169 9 170 151
— 355 | 06359 o 7967 | o 2871 |- ~—r|—- —_——— —
37 - 0 o924 | 126 6 127 123
385 | 09359 | 1 1725 | 0 3795 |- - -
4 0 0 0597 81 8 82 82
415 | 12359 | 1 5483 | 0 4392 |- — -
43 0 0337 46 2 46 48
445 | 18359 I 9242 | O 4729 -
46 —— o o164 22 § 23 27
———| 4 75 | 18359 | 2 3000 | 0 4893 =
49 - - 0 0070 9 6 10 14
——1| 505 | 21359 | 2 6759 | 0 4903 [ -
52 © 002§ 34 3 5
—| 5 3§ 2 4359 3 0517 | 0 4988
[ o 000y 12 1 1
565 | 27359 | 3 4275 | © 4997
b 09992 {1,368 9 | 1,370 1,370
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average, it follows from (24) that the skewness & does not
add to this information because the integral of (22) over a
symmetrical range is identically the same as the integral of
23) over the same range.

In passing, we should note that the function (22) is the
familiar bell-shaped #ormal law curve whose significant charac-
50.00000 % OF AREA WITHIN O Q6745 &
68.26894% OF AREA WITHIN O £ 10

95 44998°% OF AREA WITHIN 0t 20
99.73002% OF AREA WITHIN 0 230

-l0 -0.67450 0 0.67450 |0 20 30

Fie. 33.—Normar Law Curve.

teristics are shown in Fig. 33. The function (23) will be
referred to as the second approximation.

3. Why the Average X and Standard Deviation o are always
Useful Statistics

Let us consider the case where nothing is known about the
distribution of observed values. To what extent are we
Justified in assuming that the average, standard deviation,
skewness, and flatness contain significant information?

We have already seen that the amount of information
given by these statistics of valuc in reproducing approximately
the original distribution, depends upon the nature of the
original distribution as reflected in the form of function f
that would be required to satisfy the condition that its integral
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over a given range should be approximately equal to the
number of observed values within this same range. However,
even when nothing is known about the condition under which
the distribution was observed, we find that the average and
standard deviation enable us to estimate within limits which
are quite satisfactory for most purposes, the number of obser-
vations lying within any symmetrical range X =+ zo, where z
is greater than unity. In fact, the proportion of the total
number of observed values within any such limits is always

I .
greater than 1 — —. This follows from a general theorem, the
z

proof of which can be framed in the simplest kind of elementary
mathematics, as we shall now see.

Tchebycheff’'s Theorem—Given any set of n observed
values expressible by the frequency distribution of m different
values,

A, Xoy ooy, Xy ooy A

Py Py ooy Pitly ooy Pt

where pin represents the number of values of Xj, then

- pin X -
2 -1 .
X T m - EP'EA'I-!
W t=1
HP’L”
t=1

and
Zpin(X, - X)?
i=1 o

=

X pun
T |
Iet P,z denote the nuraber of values of X such that
x = (X — X) does not exceed numerically 2o where z > 1,
and 7 — Pun denote the number of values of x that do exceed zo.
We may write
ot = Zipix® + Depivi

where =; denotes summation for all values of x; which do not
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exceed 20 and I» denotes summation for all values of x; which
do exceed zo. Since all values of pix;? are either positive or
zero, .
o > Xopixi®.
Obviously, therefore,

a? > Ezpizzoz

since all values of %; included in the summation I, are greater
than 2. But
E‘_}PQ =1 — Pz.

Hence
o2 > (1 — Pp)z%?,
or
1> (1 — P2)22, (25)
([ - Pz) < i[,,
22
and
Pr>- (26)
z

We see that no matter what set of observed values we may
have, the number of these values Pzn lying within the closed

55 . !
range X + 20 is greater than (1 - .;)n whercas the number

. . . . T
(1 — Pz)n lying without this range is less than S
2

4. Importance of Skewness k and Flatness B.

Given a set of any u real numbers X, Xy, ..., Xy, .. 0, X,
what does a knowledge of the skewness 4 and flatness g2 for
this set of numbers really tell us independently of any assump-
tion as to the nature of the distribution of the numbers as was
made in deriving the theoretical distributions in Table 15?
To get at this question, let us assume that the skewness & is
equal to zero. Obviously, for a distribution to be symmetrical,
it is a necessary condition that its skewness be zero. If this
condition were also sufficient, it would be possible to say of the
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set of numbers given above that they were symmetrically
distributed about the arithmetic mean value, and hence that
there were just as many on one side of the mean as there were
on the other. This would oftentimes be really worthwhile
information.
It can readily be shown, however, that the condition

k = o 1s not sufficient for symmetry. Ior example, the dis-
tribution

X: 2 -1 1 1

y: 1 16 16 6

satisfies the condition that its skewness is zero, although
it is obviously not symmetrical about its mean value X = o.
In fact, it is far from being symmetrical as are many others
which may be found by empirical methods. In this particular
instance, instead of finding the set of numbers equally divided
on either side of the average, we find sixteen on one side and
twenty-three on the other. Hence we must conclude that a
knowledge of & in itself does not present very much information.

In a similar way it can be shown that a knowledge of B.
in itself does not present any very useful information about the
distribution of a given set of # numbers.

These results are of considerable importance because
they show that the tabulation of moments higher than the
second for the purpose of summarizing the information con-
tained in a set of data is likely to be of little value unless there is
also given some function involving these statistics, the integral
of which between any two limits gives an approximate value for
the observed frequency corresponding to these two limits. In
the general case, therefore, where one wishes to summarize an
extensive series of observations which may not satisfy the
condition of control, it is hecessary to give a satisfactory
function of this character to be used in interpreting the sig-
nificance of the tabulated statistics from the viewpoint. of
presentation of the total information contained in the original
set of data. Such functions are usually termed theoretical
frequency distribution functions, and from the viewpoint of
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presentation of an observed set of data, it would appear that
the one to be used is usually that one which satisfies best the
condition described in Paragraph 1 of this chapter.

5. Conclusion

We may divide observed distributions into two classes—
those that have and those that have not arisen under controlled
conditions. For distributions of the first class, the three
simple statistics, average X, standard deviation o, and skew-
ness % contain almost all of the information in the original
distribution. For those of the second class the most useful
statistics are the average and standard deviation. These
contain a large part of the total information in the original
distribution, at least in respect to the number of observations
lying within symmetrical ranges about the average.



CHAPTER IX

PrESENTATION OF DaTA TO INDICATE RELATIONSHIP

1. Two Kinds of Relationship

Two kinds of relationship call for consideration: mathe-
matical or functional, and statistical.

Functional Relationship.—If for each value of some variable
X a given law assigns one or more values to Y, then we say
that Y is a function of X and write

Y = f(X).
As a simple example, we may take
Y =¢(X -a)+6.

5 -/F, \\é\ 2

a=1, b=2 c=3

(a) (&)
Fi6. 34.—Grarn or Funcrion Y = ¢(X ~ a) + 6 SHOWING SIGNIFICANCE OF
PARAMEIERS a, 4, AND c.

Obviously, the graph of this function is a straight line passing
through the point X = 4, ¥ = 4. The arbitrary constants 4, 4,
and ¢ in this function are called parameters. If we fix the values
of @ and 4, and give to ¢ all possible values, we get a pencil of
lines through the point (a,4). Fig. 34-a shows such a pencil

99
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through the point (1, 2). In a similar way, if we fix the value
of ¢ and assign arbitrary values to @ and 4, we get a family of
parallel lines. Fig. 34-6 shows such a famlly forc = 3.

This simple examp]e illustrates a general prmc1p]e that
should be kept in mind, viz., that the expression of a func-
tional relationship involves two things:

1. The form of the functional relationship.
2. The specific values of the parameters in that
relationship.

Thus, in the problem just considered, the form of the function
is linear since Y varies directly as X. How it varies 1s fixed
by the values of the parameters 4, 4, and c.

Statistical Relationship.—1f for each value of some variable
X a given law assigns a particular frequency distribution of
values of ¥ not the same for all values of X, then we say that
Y and X are statistically related. Two variables statistically
related are said to be correlated.

If we let zdXdY represent the frequency of occurrence
of values of X within the interval .X to X + 4X simultaneously
with values of Y within the interval Y to Y + 4Y, the func-
tional relationship

z=f(X,Y)

is said to characterize the statistical relationship between
Xand Y.

One important statistical relationship which will often
be considered in further discussions is the so-called normal
frequency function in two variables X" and Y,

1 ( L'l_ -2 I
2 = R - e 2(1 T o2 r"x’u) > (27)
21r0’:;0'1/\/1 -7

where x = X — X and y = Y — Y. This is the familiar bell-
shaped frequency surface shown in Fig. 3. Obv1ously, five
parameters X,Y, 0z, s and r are involved in (27). Our interest
at present is centered in the fact that the characterization of a
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statistical relationship involves two things—form and specific
values of parameters—as did the characterization of functional
relationship.

F16. 35.— Te Normal Surrack.

2. Observed Relationship

In our causal explanation or interpretation of data we
assume that both functional and statistical relationships exist.
In fact it is one of the fundamental objects of experi-
mental investigation to determine these relationships or
physical laws, as they are customarily called. This practical
problem involves, in most instances, the formulation of the
law from a study of the observed data, including both the
functional form of the law and the estimate of the parameters
in the law. Taking the simplest case of relationship between
two quality characteristics, X and Y, it is obvious that our
formulation of the law and our estimate of the parameters
must be based upon an observed set of, let us say, # pairs of
simultaneously observed values of the two characteristics.
In other words, the total information is tied up in these #
pairs of values.

Suppose that we are studying the relationship between
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two physical quantities, such as the length L of a rod and the
temperature © at which this length is measured, or the distance
s that a body falls starting from rest and the time ¢ that it
is falling. One object of such a study is the expression of the
law of relationship. For example, we often assume that the
empirical law relating the length and temperature of a rod
of given material is linear, or, in other words, that the length
varies directly with the temperature; ie., L = Lo(1 + a©),
where Ly is the original length of the rod, and « is the parameter
indicating rate of increase with temperature. In a similar way,
we say that the law rclating s and ¢ in the case of a freely
falling body is s = $as?, where @ is a parameter. Having
decided once and for all that the law in question is such and
such, it remains for us to discover the best values of the param-
eters, as is illustrated by these two simple problems. A
statement of the law and estimates of the parameters in that
law is the common method of summarizing data indicating
relationship.

However, even in the simple case where we believe that a
functional relationship exists, it is a difficult matter to determine
what this functional relationship likely is; and, having once
decided what function to assume, we must choose one from
among the many different possible ways of finding estimates of
the required parameters. In other words, the problem of
presenting data in this way is to a large extent indeterminate
even when the assumed relationship is functional. It goes
without saying that the indeterminateness becomes even
greater when the relationship assumed to exist is statistical.

To emphasize what has just been said, let us try to find the
relationship between the current through and the voltage
across a carbon contact from the data given in Table 7. In
this case there is no a priori basis for assuming the form of
the law of relationship. If, however, we assume that it is
functional and parabolic in form, or, in other words, if we
assume that the current Y is related to the voltage X in the

following way,
Y=a+aX+aX?
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we must find, from the data, estimates of the three parameters
a, a1, and a;. If we had a universally accepted method of
finding these parameters under these conditions, the problem
of presenting relationship would be quite simple indeed. As
we have already said, however, there are many different ways
of estimating these parameters, four of which are:

1. Direct substitution of observed values.
2. Graphical method.

3. Method of least squares.

4. Method of moments.

The details of the methods of estimating the parameters in these
different ways are given in standard treatises on curve fitting.
It will serve our purpose here to consider merely the variability
in some of the results obtained by these different methods.
Two of the several possible scts of values for the parameters
that can be obtained by direct substitution are those in the
equations

Y = — 0.01000 + 0.01333 + 0.00000X?,
and

Y = 0.09000 — 0.00167.X 4 0.00056 X2.

FEach of the following equations contains one of the infinite
number of possible sets of values for the parameters obtainable
by the particular method indicated.

1. Graphical Method
Y = — 0.02446 + 0.01225.X + 0.00012.X?%,

2. Method of Least Squares !
Y = 0.00809 + 0.00967X + 0.00016 X2,

3. Method of Moments?
Y = 0.02649 + 6.00831 X + o0.00018X2,

’

! This equation was obtained by minimizing the vertical deviation of a point from
the curve of fit. Obviously, this is only one of an infinite number of different ways in
which the minimizing process could be carried out, by choosing different distances to
minimize. We customarily minimize one of the three distances, vertical, horizontal,
or perpendicular to the line itself.

*We may use any threc moments, The first three are usually chosen.
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Obviously, any one of these equations is supposed to summarize
the data of Table 7 in respect to relationship. It is apparent,
however, that the details of this summary depend upon.the
choice of the method of calculating estimates of the parameters.

If in this case a different law of relationship is assumed to
exist, the values of the parameters supposed to contain the
information in the original set of data may be expected to be
different from those given above. The difficulties of expressing
relationship in this simple problem are multiplied many fold
when the relationship is statistical instead of functional.

In the light of these considerations, it becomes apparent
that the problem of presenting essential information in respect
to relationship is a complicated one and that a complete
discussion of the subject is beyond the scope of the present
text. What we shall do in the remainder of this chapter is to
consider the significance of the correlation coefficient as a
measure of relationship, because we shall find 1t to be a satis-
factory measure in most of the problems with which we have
to deal.

3. Information Given by the Correlation Cocfficient !

4. Let us assume that we have » simultaneously observed
pairs of values of two quality characteristics X and Y. As a
specific case, let us consider the observed set of sixty palrs of
values of tensile strength and hardness previously given in
Table 3 and shown graphically in Fig. 36. It may be shown
that the line of best fit to such an array of points obtained by
the method of least squares 2 through minimizing the squares
of the vertical deviations of these points from this line is

y = r-tx, (28)

oz

where x = X — X, and y = Y — Y, the symbols X, Y, oz, oy,

and r being expressed in terms of the # observed pairs of values

11t will be found helpful to read Chapter 1V of Mathematscal Statistics by H. L.
Rietz in connection with the remainder of this chapter.

2 Throughout the remainder of this chapter, a line of “best” fit is always to be
taken in the least square sense.
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of X and Y. In the same way, the equation of the line of best
fit obtained by the method of least squares through minimizing
the horizontal deviations of the points from this line is given
by the equation

x = rgiy. (29)
Similarly, the line of best fit obtained by minimizing the

squares of the perpendicular deviations of the points from the
line of fit is given by the equation

" [(02? — 0y?) = V02 — 0y2) + 47002 %, (30)

y=- 2raz0y
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Equation (30) with a positive sign before the radical gives
the line of worst fit.

Having summarized the information in the sixty pairs of
values of tensile strength and hardness in the form:

Average Tensile Strength Y in psi = 31869.4
Average Hardness X in Rockwells = 69.82
Standard Deviation gy of Tensile Strength in psi = 3962.9
Standard Deviation oz of Hardness in Rockwells = 11.773
Correlation Coefficient = 0.683

we may write down without further work the equations to the
three lines of best fit just mentioned. They are

¥ = 220.904x,
X = 0.002029Y,

¥ = 492.837x.

These are shown graphically in Fig. 36. In Figs. 36 and 40
the variables are expressed in terms of their respective standard
deviations, and the units of the scales are made equal.

B. If, in a scatter diagram such as that showing the rela-
tionship between depth of sapwood and depth of penetration,
we plot the averages of the column and row arrays, we get some
such result as that indicated in Fig. 37. The line of best fit
to the averages of the columns when each squared deviation 1s
weighted by the number of points in the corresponding column
is given except for errors of grouping by (28); similarly, except
for errors of grouping, the line of best fit to the averages of
the rows is given by (29). These two lines are called re-
spectlvely the Jines of regression of y on x and of x on y.

It is shown in e]ement'try texts on statistics that, if all of
the standard deviations in the column arrays are equal,' then
for linear regression cach is equal to the standard deviation sy
of the observed points in the scatter diagram about line (28),
where

.\'y=0'y\/l—r2. (31)

! When this condition is satisfied, the distribution of v is said to be homoscedastic.
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With this same restriction, if all of the standard deviations
in the row arrays are equal, then it follows that each is equal
to the standard deviation sz of the points about line (29)
and is given by the expression

(32)
Sr
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F16. 37.—LiNEs oF REGREssION.

Under thesc conditions, it follows from what has just been
said and from Tchebycheff’s theorem that the fraction of the
total number of points in the scatter diagram within the band

y £ zy= r?x + 35y (33)
y

. I
will be greater than 1 — —.
22

If this scatter diagram has been obtained under conditions
of control or, in other words, if the distributions in the row
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and column arrays are approximately normal, the number
of points within such a band will be approximately that derived
from the normal law integral. Fig. 38 shows such a band for
the 1,370 pairs of values of depth of sapwood and depth of
penetration for the case z = 3. Under controlled conditions,
this band should include approximately 99.7 per cent of the
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Fic. 38.— LiNt oF REGRESsION anp 99.7 Per Cent Limrts,

1,370 points. We find that it actually includes g9.1 per cent
of the observed values, even though the data do not rigorously
meet the condition of control.

What has just been said concerning the band about the
line of regression of y on x holds good in a similar way for
the corresponding band about the line of regression of x
on y.
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C. If we rewrite the equation (27) of the normal surface
in the form
xz

z = Lozm—e 2,
2wazoy\/ 1 — 72 (34)

we see that all values of x and y for a constant value x, of x
lie on an ellipse defined by the equation

xZ  y2  apxy )
L (35)

T — 7“\0’;(2 Uy" U_[:Oy/
By revolving the original axes through an angle & such that

270 3oy,
tan 2a = Y (36)
oz — oy”

the equation of this ellipse for any value of x becomes

ax® + bvi® = X%, (37
where

anc

. 1 i 1 qre
b= — —l —+ --;)+ Vi~ ot) *oor
2(L — 77) \o,2 oy ot oy~ or-oy”

Hence the semi-axes of any ellipse are

X X
S~ and - - 8
a anc -\/b (3 )

respectively.

When the observed frequency distribution in two dimensions
has been obtained under controlled conditions and sometimes
even when the conditions have not been controlled, the namber
ny within the ellipse x is given approximately by the integral

, A
f e~ rxdx =1—¢ ¥ (39)
0
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TasLe C
L]
Fraction Fraction Fraction Fraction
x? Qutside Inside Outside Inside x?
e ix? 1— e~ 3x® o it [— e~ ix®

o1 0 951229 O 048771 0 Yooo 0 1000 0 2107
o2 0 904837 0 095163 o Rooo 0 2000 0 4463
o3 o 860708 0 139292 0 7500 0 2500 0 §754
0 4 o 818731 o 181269 0 7000 0 3000 o 7134
o5 o 778801 0 221199 o 6ooo 0 4000 1 0217
06 o 740818 0 259182 0 §000 0 5000 1 3863
07 0 704688 0 295312 0 4000 0 6000 1 9326
o8 o 670320 0 329680 0 3000 0 7000 2 4080
oy o 637628 o 362372 0 2400 o 7500 2 7726
10 o 606531 0 393469 0 2000 0 8000 3 2198
20 o 367879 o 632121 0 1000 0 9ooo 4 6052
Jo 0 223130 o 776870 0 0§00 0 9§00 5 9915
40 0 135335 o 864665 0 oloo O 9yoo 9 2104
§ 0 o 082085 0 Y1791¢ 0 0030 o 9470 11 8194
6o 0 049787 0 950213 0 027 © 9973 11 8290
7 0 0 030197 o 969803

8 o o 0183106 o ¢81684

9 O 0 01110y o 988891

10 0 0 006738 0 993262

11 0 0 004087 0 995913

12 0 O 002479 0 9y7§21

130 0 001503 0 998497

14 0 0 000Y12 0 999088

150 0 000553 0 999447

16 o 0 000335 0 999665

17 0 0 000203 © 999797

18 o 0 000123 o 999877

19 0 O 0000758 0 9yyy2§
20 0 0 000045 © 999958

From Table C we can read off the value of this integral for a
large range of values of x% Fig. 39 illustrates the method
of constructing 5o per cent and ¢9.73 per cent ellipses for the
distribution of 1,370 pairs of values of depth of sapwood and
depth of penetration. Observation shows 49.9 per cent and
g9.12 per cent within these ellipses.
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X = Depth of Sapwood in inches

n = 1370
X=2 914088
2

Y =1 591460

r = o 603201

111

Y = Depth of Penctration in inches

tan 20 = —2b _ 4
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ELLipses FrRomM THE Data
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Similar calculations of the correlation ellipses for the sixty
pairs of simultaneously observed values of tensile strength
and hardness previously discussed give the results shown
graphically in Fig. 40. In this connection the line of best fit
is that obtained by minimizing the perpendicular distances
of the points from the line.

3.5~
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Fic. 40.—INrorMaTION GIVPN BY AVERAGE, SrANDARD DEVIATION, AND
CorrELATION COEFFICIENT.

.

The striking thing about the illustrations considered in
this paragraph is that, under certain conditions, a knowledge
of the five statistics X, Y, oz, gy, and 7 gives us so much of the
total information contained in the raw data.

If 7 be the correlation coefficient between any given set of

n pairs of values X,Y1, X2Ys, ..., XiVi, ..., XuVn of any
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two variables X and Y, it is interesting to note that 72 = 1 is
both a necessary and sufficient condition that the set of points
lie on the line (28), because sy = o only when » = + 1. In this
case sz is also zero and the two lines of regression (28) and (29)
coincide. In other words, 72 = 1 is a necessary and sufficient
condition that ¥ be a linear function of X. If 72 is approx-
imately equal to unity, it is not necessary that all of the points
lie near the line of regression although a majority of them do.
We must know something about the nature of the scatter
before we can interpret 7 in this case.

4. Relationship between Several Qualities

What has been said about the relationship between two
quality characteristics can easily be extended to the case of
several. We shall consider here only the use of the correlation
coefficient in determining the plane of best fit and the location
of the observed points in a band about this plane for the case of
three variables.

Let us assume that we have # sets of simultaneous values
of three variables X, Y, and Z. Let X, Y, Z, oz, 0y, 02, 7xy, 7yz,
and 7z be the arithmetic means, standard deviations, and
correlation coefficients respectively.

It may easily be shown that the plane of regression of z
onxand y, when x =X — X,y =Y —Y,andz =27 — 7,
is given, except for errors of grouping, by the following ex-
pression

z2=a+ bx+ cy, (40)
where
a=o,
b= oelraz - T y), (41)
or(1 — rgy®)
_ Uz(ryz - 7‘11/7‘12)

01— ray) (42)

These equations show that a knowledge of averages,
standard deviations, and correlation coefficients ! gives us the

! Obviously rzy = ryz, etc.
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information required to construct such a plane. As an illus-
tration, Table 19 gives these statistics for the sixty sets of
values of tensile strength, hardness, and density previously
given in Table 3.

TasLe 19.—INrorMAaTION OF TABLE 3 GIVEN IN TERMS OF SIMPLE STATIsrics

Density X in Hardness ¥ in Tensile Strength Z
gm/cm.? Rockwells in psi
Arithmetic Mean 2 6785 69 825 31,869 4
Standard Deviation. o 0986 11 773 31962 9
rry =0 616 ry: = 0 683 re: =0 687

Substituting these values in (40) we get
Z = 15310.358 + 150.988v.

The standard deviation oz.yz of the points from this plane is
given approximately ! by

1 [
[ I Tyz 7zz

ryz I Txy i
i
Yrz try T |

- = 2,638.5 psi. (43

0z.yx oz (1 — r[y:)'z
The graphical representation of the planc was given in Fig. 14.

Under conditions of control the number of points within
the band formed by the two parallel planes spaced at a distance
202.yz on either side of the plane of regression should be approx-
imately given by the normal law integral, Table A.

Naturally we can duplicate the above discussion for the
planes of regression of y on z and x and of x on y and z.

Equation (43) enables us to measure the scatter of the
observed points in Fig. 14 from the planc of regression shown
therein. It is of interest to compare the standard deviation
oz.yz with the corresponding standard deviations szy and sz

! The numerical result given in (43) is obtained by using more decimal places than
shown in Table 19. Cf. Paragraph 7, Chapter 7, Part 11.
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measuring respectively the standard deviation of the points
from the line of regression of z on y and z on x. It is easily
verifiable that the equations of these two lines of regression are

oz
z=ryz—y = 229.964y,
oy
and
gz
Z = ryz—-x = 20,418.993%.
or

It also follows that

Szy = 02V 1 — ryz? = 2,893.98 psi

Szx = 0zV 1 — 7');22 = 2,()87.028 psi.

Both of these standard deviations are larger than o,.zy given
by (43), the relative magnitudes being represented by the
lengths of the lines in Fig. 14-d.

and

5. Measure of Relationship—Correlation Ratio

Given any set of # pairs of values X\ Y1, X.Ys, ..., XiV5,
..., XnYn, another useful measure of relationship is the
correlation ratio nyz of Y on X. By definition

'fly.rg =1— ﬂ’f
O'y2
where 5142 is the mean square of deviations from the means of
the arrays of y’s.

The correlation ratio nzy of X on Y may be defined in a
similar manner.

It is shown in elementary texts! that the square of the
correlation ratio must lie between o and 1 and satisfies the
expression

1> nwz > 7,

The condition that ny* = 1 is sufficient to prove that the
variable Y can be expressed as a single-valued functional rela-

1 Cf, Rietz, loc. cit.
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tionship of X, and that the condition 5y — 72 = o is satisfied
if and only if the regression of y on x is linear. Since the
square of the correlation ratio can never be less than the
square of the correlation coefficient, it follows that r is zero
if nyz? is zero. However, the condition that r = o, does not
necessarily mean that 9y, = o.

Furthermore, it should be noted that the correlation
coefficient 7 may be zero cven though Y is a function of X.
Rietz ' has shown that this is true, for example, when

Y = cos A X.

6. Measure of Relationship—General Comments

From the viewpoint of presentation of information to show
statistical relationship, it is necessary to do more than simply
tabulate statistical measures such as the correlation cocflicient
and correlation ratio.2 It will be recalled that a similar state-
ment had to be made in respect to the interpretation of moments
of a frequency distribution higher than the second. In contrast
with this situation, however, we have seen that the average
and standard deviation of the distribution contain a large
amount of the total information given by that distribution
independent of its nature. Of course, the knowledge of these

1“On Functional Relations for which the Coefhicient of Correlation is Zero,”
Quarterly Publications of the Amerscan Statistical Assvciation, Vol. XVI, September,
1919, Pp. 472- 476.

2 Incidentally, 1t should be noted that both the correlation coefficient and the
correlation ratio are only measures of certain characteristics of correlation defined in
the first paragraph of the present chapter. In other words, the frequency distribu-
tion functions of the x arrays of ¥’s need not all be alike and hence there may be
definite correlation although r = 0 and #,. = 0. A case in pont 1s the scatter dia-
gram of numbers shown below and typical of an indefinitely large number which might
be constructed.
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two statistics gives us perfectly definite information about
an observed set of # pairs of values of any two variables X
and Y. Thus we can say:

(A) If 2 = 1, then y is related to x by a linear function.

(B) If nyz® = 1, it follows that Y is a function of X or
that ¥ = f(X).

(C) The regression of y on x is linear if and only if
Ny — r¥ = o.

However, other values of 7 and n do not give us such positive
information. TFor example, if 7> = o, it does not necessarily
follow, as we have already seen, that there is no correlation
between Y and X. Similarly, if 5.2 = o, then » = o, but
ifr = o, it does not necessarily follow that yz* = 0. Moreover

the conditions
ri= 1

nyz® = 1

nyxz — 7’2 = o)

do not necessarily tell us much about the correlation between
Y and X.

We have seen what a useful tool the correlation coeflicient r
is under certain conditions. We must have been struck, how-
ever, with the interesting fact that neither » nor any other
measure of relationship gives a fraction of the total information
definable within certain limits irrespective of the nature of the
relationship, a condition that is satisfied by the average X
and standard deviation ¢ of an observed distribution. In
other words, no matter whether we express the relationship
as functional or statistical, the significance of a given parameter
is in the present state of our knowledge dependent upon the
form of the relationship, whereas certain information is given
by the average X and standard deviation ¢ of a frequency
distribution independent of the form of the distribution, and
this is made useful through the Tchebycheff theorem.
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CHAPTER X

Laws Basic to CoNTrOL
1. Control

We like to believe that there is law and order in the world.
We seck causal explanations of phenomena so that we may
predict the nature of the these same phenomena at any future
time. As stated in Part I, a phenomenon that can be predicted,
at least within limits associated with a given probability, is
said to be controlled. Prediction only becomes possible through
the acquisition of knowledge of principles or laws.

2. Lxact Law

By an exact ' law we shall mean a rule whereby we can
predict with a high degree of precision the future course of
some phenomenon.

An illustration will serve to clarify this definition. If we
impose an electromotive force £ sin wf upon the simple circuit,
Fig. 41, with inductance L,
capacity C, and resistance R, A w/\?\/\/‘
the current 7 at any time £ is
given by the solution of the
differential equation

ESIN wt

) (m’/ T
E sin ot = L;I;+Rz+—— 1:'

C

. Iue. 41.—Exampeir or CoNTROLLED PHE-
The current thl'Ollgh this NoMENON OBryInG aN Exacr Law.

circuit is, therefore, a simple .
example of a controlled phenomenon obeying an exact law, in
this case a differential equation.

1Of course no physical law is exact in the rigorous mathematical sense. The

significance of this term as here used will become clear as we proceed.
121
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Of this same character are the numerous laws of physics
and chemistry, such as Newton’s laws, Fermat’s principle,
Maxwell’s equations, the principle of least action, and so on.
Naturally, the control of quality of manufactured product
involves the use of all known exact laws of this character.
These laws alone, however, are not enough to insure control
because, as we have already noted in Part I, the variability
in quality often is unexplainable upon the basis of known
exact laws. We say that such variations are produced by
unknown or chance causes.

If then we are to secure control of quality of product,
we must make use not only of exact laws but also of laws of
chance, sometimes termed statistical laws. Perhaps the
basic law of this character is the law of large numbers.

3. Law of Large Numbers

If we flip a coin, either the head or the tail must come up.
If we repeat the experiment again and again, we find that
there is a certain constancy in the nature of the results obtained
and that this constancy appears to be independent of whether
you flip the coin or whether 1 flip it; whether the coin is
flipped in some far-off country or at home. From every corner
of the world, we get evidence of a certain constancy in the
experimental results; i.e., it appears that the observed ratio
of the number of times that a head comes up to the total
number of throws approaches in a certain sense a constant
value for a given coin. This kind of experience is, however,
not limited to coin throwing; and, as a result, the following
general principle is accepted as a law of nature:

Whenever an event may happen tm only one of two ways,
and the event is observed to happen under the same essential
conditions for a large number of times, the ratio p of the number
of times that it happens in one way to the total number of trials
appears to approach a definite limit, let us say p, as the number
of trials increases indefinitely.

Symbolically we may state this law in the form

Ls p=np, (44)

n—
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where Ls stands for what we shall term a statistical limit,!
which differs from a mathematical limit in that we do not reach
a number 7y of trials such that, for all values of 7 greater than
no, the ratio of the number of times an event happens to the
number of trials differs from some fixed value by less than some
previously assigned small quantity e.

We shall call this limiting value p an objective probability,
and we shall assume that this objective probability of an
event happening under the same essential conditions may be
used in the same mathematical sense as we use measures of
a priori probability in the mathematical theory of probability.

Mathematical or @ priori probability is usually defined in
some such way as the following: If an event can happen in
a definite number 7 of mutually exclusive ways, all ways
being equally alike, and if m of these ways be called favorable,

then the ratio - is the @ priori probability of the favorable
n

event. Ior example, in the tossing of a coin the number »
of ways in which the event may happen is considered to be
two—head or tail. If the turning up of a head is taken as
favorable and if the two ways the event may happen are
equally likely, the @ priori probability of a head is }. In a
practical case, we never inow whether or not the ways an
event may happen are equally likely; often we do not even
know the number 7 of ways. Hence we cannot calculate the
a priori probability of an event. Assuming the existence of an
a priori probability p of an event, the best we can ever hope
to do is to adopt some cstimate p of this probability which
may not and, in general, will not be the true objective value p.

Obviously, the concept of a priori probability is not the
same as that of a statistical limit. Furthermore, even though
an a priori probability of an event does exist in an objective
sense, it is not necessary that even an infinite sequence of
trials will lead to the establishment of this @ priori probability
that can be accepted in a rigorous logical sense. On the other
hand, if we knew in a given case that an objective a priori

! See Fig. 1 of Appendix II as an illustration of the way p approaches a statistical
limit.
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probability did exist, it appears that we would most likely
have faith that the more observations we took in determining
an empirical measure of this objective probability, the better
our estimate would become. In general it appears that we
must believe that estimates of probabilities derived from
large samples are, in the long run, better than those derived
from small samples. In other words, it is perhaps reasonable
to believe that our best estimates of @ priori objective prob-
abilities are those values which we determine through large
samples. So far as the present book is concerned, a priori
probabilities and probability distributions will be characterized
by a bold-faced notation wherever necessary for the sake of
clearness. Whether we think of these as statistical limits or
simply as mathematical entities should not influence to a
marked extent their practical significance in that in any case
the important thing to note is the way in which estimates of
these probabilities represented by the regular symbols are
actually derived from the data.!

A slightly more extended form of this law of large numbers
is as follows: If we make a serics of # measurements

Xl, _Xz, P _Xi, “ ey Xn

of some quality characteristic X in such a way that each
measurement is madc under the same essential conditions, the
ratio p of the number of times that an observed value X" will
be found to lie within any specified range Ar to X to the
total number # will approach a statistical limit p as the number
n 1s increased indefinitely.

A still more general statement of this law is: If we take a
series of m samples of # measurements,

.Y]], A’12, e e ey A’n’, “ ey ‘an
.
Xoty, Xozy oony Xogy oo, Xon

> (45)

Xmi, Amz, oo 'mi, e eey Xmn

11t will be found helpful to read, in this connection, the discussions of the defini-
tions of statistical limit and probability found in such books as Kry’s Probability and
Its Engineering Uses, Coolidge’s Probability, and Rietz’s Mathematical Statistics.
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in such a way that each one of the m samples is drawn under
the same essential conditions, and if we let © be a symmetric
function or statistic of the 7 values of X in a sample of size #,
the ratio p of the number of times that the observed value of 6
will be found to lie within the range ©; to ©: to the total
number 7 of samples will approach a definite statistical limit p
as the number m of samples is increased indefinitely. Functions
of this type are termed statistical laws.

To control quality we must make use of both exact and
statistical laws.

4. Point Binomial in Relation to Control

If p is the mathematical or @ priori probability of the
occurrence of an event or success and ¢ is the mathematical
or a priori probability of the non-occurrence of the event, it
readily follows ! that the probabilities of 0, 1,2, 3,...,4,...,
n occurrences of the event in # trials are given by the suc-
cessive terms of the point binomial

(9 + ],)n_
It also follows that:
Average number of successes = pn. (46)
Standard deviation of number of successes = \/pgn. (47)

We are now in a position to consider evidence in justification
of our assumption of the existence of the law of large numbers.

5. Evidence of the Existence of the Law of Large Numbers

A. Tossing a Coin or Throwing Dice—FExperience shows
that, if we throw what appears to be a symmetrical coin or
die a very large number of times, the statistical limit of the
ratio of the number of heads to the total number of throws of
the coin is 4. Similarly, if the occurrence of 1, 2, or 3 on a
symmetrical die be termed a success, the statistical limit of
the ratio of the number of successes to the total number of
throws of the die is 4. If then our previous assumptions are

1 See any elementary textbook on probability.
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justified, we should expect ! to find the relative frequencies
of occurrence of 0, 1, 2,3, ..., 7 successes in a large number
of throws of » dice to be given by the successive terms of
the point binomial (3 + %)™

We may make use of some of the experimental results
obtained by throwing 7 dice a large number of times to see
how closely the observed frequency distribution of successes
checks that of the point binomial. The second column of
Table 20 gives the observed relative frequencies of o, 1, 2, 3,
..., twelve successes in 4,096 throws of twelve dice.? The
third column of this table gives the mathematical probabilities,
or, in other words, the successive terms of the point binomial
&+ b

A little observation shows that the second and third columns
reveal a striking agreement. In other words, it appcars that

TaBLE 20.—~RELATION BErWEEN MATHEMAITCAL PROBABILIIILS AND
ExpERIMLNTAL ResvLis

Number | Observed | Mathematical || Number | Observed | Mathematical
of Relative Probability of Relative Probability
Successes | Frequency p (G4 e Successes | Frequency p 3+ i)
o 0 000V 0 0002 - o 2068 0 1934
1 0 0017 o 0029 8 o 1309 o 1208
2 o o146 o o161 9 0 0627 o 0537
3 0 0483 0 0837 10 o o173 o o161
4 o 1050 o 1208 11 o 0027 0 0029
5 o 1785 0 1934 12 O 0000 0 0002
6 o 2314 0 22¢6

the rule of procedure followed in calculating the mathematical
probabilities in this particular case leads to a close prediction
of the experimental results. We return in Part VI to consider
more critically the closeness of check between the mathematical
probabilities and the observed relative frequencies.

1 Strictly speaking, we know that the conditions of symmetry are not satisficd by
actual coins and dice, hence the statement here made is only approximately true.

2 These data are given in .fn Introduction to the Theory of Statistics, by G. Udny
Yule (8th ed.), p. 258.
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B. Sampling Experiment.—I1f we were to draw a series of
chips with replacement from a bowl containing a large number
of similar chips each marked with a given number, common
experience leads us to believe that the observed relative fre-
quency of the occurrence of a given number would approach
as a statistical limit the relative frequency of this number in
the bowl as the number of trials increased indefinitely. It
follows that, if we were to draw a series of # chips with replace-
ment and then a series of say 2# chips, the observed frequency
distribution of numbers in the sample of 27 chips should
approach closer to the actual frequency distribution of numbers
in the bowl than should the observed frequency distribution
of say only # chips; or, in general, the larger the number in
the sample, the closer, in the statistical sense, should be the
approach of the observed frequency distribution of the sample
to the true distribution in the bowl. The results of the fol-
lowing experiment give evidence that such a prediction, made
upon the assumption of the existence of the law of large
numbers, appears to be justified.

Successive samples of §, 10, 20, 10c, and 1,000 chips were
drawn with replacement from a bowl in which the frequency
distribution of the numbers on the chips in the bowl was that
indicated in the upper left-hand corner of Iig. 42. The observed
relative frequency distributions of numbers for the samples of
different size are also shown in this figure. We witness the
smoothing out of the distribution with increase in the size of
sample as is predicted upon the assumption of the law of
large numbers.

C. Distribution of Number of Alpha Particles—In 1910,
Rutherford and Geiger ! observed the distribution of frequeacies
with which o, 1, 2, ..., alpha particles struck a screen of
constant dimensions in successive equal intervals of time.
The objective probability of a particle striking the screén as
estimated from this experiment is 0.046; and, assuming that
this can be used as a mathematical probability in a point

1“The Probability Variations in the Distribution of a Particles,” Philosophical
Magazine, Series 6, Vol. XX, 1910, p. 698.
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binomial (¢+p)* where ¢ + p = 1, we get the smooth fre-
quency distribution shown in Fig. 43. The agreement between
the observed relative frequencies and those calculated from the
point binomial is further justification for our belief in the law
of large numbers.

SYSTEM OF CAUSES SAMPLE OF 5
SAMPLE OF 10 SAMPLE OF 20
SAMPLE OF 100 SAMPLE OF 1000

Fic. 42.—Tvpical ExreriMeNIAL LvIDENCE For LAw oF [LARGE NUMBERS.

D. Macroscopic Properties of Matter—We might be willing
to agree that there appears to be a close agreement between
what was observed under A, B, and C and that which was
predicted upon the assumption of the existence of the law of
large numbers, and yet we might not appreciate the full extent
to which this law is basic to our modern conceptions of physical
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and chemical laws. Perhaps our best justification for belief
in this law comes from study of the macroscopic properties
of matter expressed in terms of its microscopic properties.
For example, we believe that a gas is made up of a large
number of molecules dancing about in a way characterized

Q. PARTICLES BEING EMITTED
UNDER A CONSTANT SYSTEM
OF CAUSES

owur

® OBSERVED POINTS
. = THEORETICAL DISTRIBUTION(0.954+0.046)%4

NUMBER OF OBSERVATIONS
]
o

30 15 20 25
NUMBER OF Q. PARTICLES IN INTERVAL

Fi16. 43.—I'REQUENCY DisTRIBUTION OF ALPHA PARTrICLES.
4.

by the Brownian motion previously considered. For a single
molecule the properties of greatest importance are perhaps
those of position, velocity, and mass. In most practical
applications, however, we do not interest ourselves so much
in these as we do in the properties of a group of molecules,
such as pressure, viscosity, temperature, and entropy. Now,
it is shown in elementary texts on kinetic theory that these
four properties are statistical in nature and result from a
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state in which the law of large numbers applies with great
precision.

For example, it is shown in discussions of kinetic theory
that the pressure p of a gas containing » molecules, each of

mass m, is given in terms of the root mean square velocity \/=
by the expression
P = imw2. (48)

Thus we see that the pressure of a gas is a statistical average
dependent upon the law of large numbers for its constancy
and yet under constant temperature conditions we know that
the pressure remains constant within the precision of our
measurements.

In a similar way, we find the law of large numbers playing
an important rdle in the discussion of Brownian motion,
the fluctuation in density of a fluid, the distribution of velocities
of electrons emitted from a hot filament, the distribution of
thermal-radiation among its different frequencies, rates of
diffusion and evaporation, rates of thermal and electrical
conduction, rate of momentum transfer, rates of thermal and
photo-chemical reactions, and so on indefinitely.

Upon the basis of results such as indicated under A, B, C,
and D, we make the following assumption:

There exist in nature systems of chance causes which operate
in a way such that the effects of these causes can be predicted
after the manner just indicated, by making use of customary
probability theory in which objective probabilities in the limiting
statistical sense are substituted for the mathematical probabilities.

Stated in another way, we assume that there are dis-
coverable constant systems of chance causes which produce
effects in a way that may be predicted:

6. Controlled or Constant System of Chance Causes

The unknown causes producing an event in accordance
with the law of large numbers will be called a constant system
of chance causes because we assume that the objective prob-
ability that such a cause system will produce a given event is
independent of time.



LAWS BASIC TO CONTROL 131

In other words, a cause system is constant if the phe-
nomenon produced thereby satisfies the conditions charac-
terized by either (44) or (45).

7. Meaning of Cause!

As human beings, we want a cause for everything but
nothing is more elusive than this thing we call a cause. Every
cause has its cause and so on ad infinitum. We never get quite
to the infinitum. In this sense there must always exist a
certain amount of topsy-turviness about the world as we
perceive it. All that we can do is to find certain practical rules
or relationships among the things which we observe. In doing
this, we introduce a lot of terms which we cannot explain in the
fundamental sense, but which we use to great advantage as, for
example, mass, energy, electron, and so on. Under these
conditions we go ahead undaunted and introduce theories as
to how these things are related, even though we do not know
what these things are that we talk about.

As an example, we have theories of light, but we do not
know what light is. In some ways it acts like a wave, in
others like a corpuscle. From our viewpoint, the justification
of the use of either the wave theory or the corpuscular theory
of light is that it helps one to attain the desired end. So,
in the simple theory of control, we talk about causes even
though we do not know what a cause really is any more than
we know what light or electricity is. Nevertheless, when we
apply contrm t]u.ory, as we do in this book, it is just as easy to
get a “feeling” for what we mean by cause in a specific case
as it is to get a feeling for what we mean by light when we talk
about it.

8. Variable System of Chance Causes

All systems of chance causes are not constant as two
simple examples will serve to show. Fig. 44 shows the fluc-
! An interesting discussion of cause and effect will be found in W. E. Johnson’s

Logic, Vol. 111, treating of the logical foundations of science, and published by the
Cambridge University Press, 1924.
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tuations ! in general business conditions over the period from
1919 to 1928. Similar curves could be given for the fluctuations
in market prices of individual commodities or stocks. It is
well recognized that the causes of such fluctuations are, for
the most part, unknown. The general belief is, however, that
variations of this character show distinct trends and possibly
cyclic movements—the existence of either rules out the con-
stancy of the cause system.

T
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F16. 44.—GEeNERAL Business Comparen, witH NorMal.

Fig. 45 shows the growth in the number of Bell-owned
telephones in the United States from 1876 to 1928. Similar
curves of growth could be given for sales of almost all com-
modities, such as radio sets, electric washing machines, per-
fumes, automobiles, and so on indefinitely. Always in such
curves there are certain irregularities introduced by chance
causes. In fact, the causes of such growth in a particular case
are usually unknown, although they certainly do not exhibit
the characteristics of a constant system.
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9. Statistical Laws
Constant systems of chance causes give rise to frequency
distributions, often called statistical laws.! One such is the
law of mortality, and another is the law of distribution of dis-
16

N

S

NUMBER OF TELEPHONES IN MILLIONS
& [

Fic. 45.—NumBer oF TELEPHONES IN THE BELL SvsTiEM.

placements of a particle under Brownian motion, both of
which were mentioned in Part 1.

Another well-known example is Maxwell’s law of dis-
tribution of molecular velocities,

co?

dy = Ae 2 dvg dvy dvg, (49)

11t will be noted that a frequency distribution as here used is in the sense of an

objective law of distribution whereas, in Part I1, it was simply introduced as a function

such that its integral over a given range is a fair approximation to the observed number
of observations falling within that range.
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where dy is the probability of a molecule having a velocity v
with components lying within the respective ranges vz to
vz + duz, vy to vy + dvy, and vz to v; + dvz; and where .7 and ¢
are constants for a particular kind of molecule in a given state.
We may transform this law into one which gives us the prob-
ability dy that a molecule will have a speed between v and
v + dv. By so doing we get

cv?

dy = Be 2v%dv, (50)

where B is a constant different from .7. The constants .7, B,
and ¢ in these equations can be determined experimentally for
a gas under given conditions and these laws may then be uscd
to predict either the number of molecules having an x, y, or z
component within given limits or a speed v within a given range.

Equation (50) may be stated in terms of the root mean

square speed V'y* in the following way

by _31,2
dy = 41r<»~‘3rj)> e 2rpidy. (50-a)
Using the value 461.2 meters per second at zero degrees centi-
grade determined from (48) for the ront mean square speed
of an oxygen molecule, we get the distribution of speeds of one
thousand oxygen molecules given ' in Table 21.

TarLE 21.—DI1s rrIBUTION OF SPEEDS
Meters per Number of Meters per Number of
Second Molecules Second Molecules
o-100 13- 14 400500 202203
100—200 81- 82 . §oo bco I161-142
200300 166-167 600 700 91- g2
300400 204-215§ 700--800 76~ 77
Fig. 46 shows schematically the shape of this distribution

! Data taken from Meyer’s Kinetic Theory of Gases.
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curve and the relationship between the mean speed v, root
mean square speed V22, and modal speed 7.

' The mean speed v = 424.9 meters per second
Root mean square speed Vy2 = 461.2 meters per second

Most probable speed 7 = 376.6 meters per second

Obviously, if the quality of a product is controlled in the
sense that the fluctuations therein obey the law of large numbers
and hence some statistical distribution law, we must know

N

PROBABILITY

Vo ov Ve
Fic. 46.—A StaTisricat Law—ONe IForm oF MaxwerL's L.aw For OxvGEN
MoLecuLES.

this law in order to predict how many pieces of product will
have qualities lying within given limits. To be of use in this
as in any other problem, statistical theory must provide us
with statistical distribution laws.

It is but natural, thereforc, that attempts should have
been made to discover and tabulate all such laws. As early
as 1756 a law of error was proposed, and in quite rapid suc-
cession other simple laws of error were suggested. Some of
these, including the normal law of Laplace and Gauss, are
shown in the first five rows of the table in Fig. 47.
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An attempt was made to apply the normal law to many
observed distributions, but it was soon found to be un-
satisfactory in a majority of problems. This situation
gave rise to an active search for more general laws, some
of which are indicated in the last six rows of the table in
Fig. 47.

Two of these general laws should be briefly considered
here as we shall have occasion to refer to them in one way or
another. One is that of Pearson represented by the dif-
ferential equation

. oVBi(B:+ 3)
1dv T lope — 1261 — 18

Yl Gy -8 VBB -3
1082 — 12081 —18 1082 — 1281 — 18" 10B2— 128, — 1%

, (51)

where y is the relative frequency function of the deviation x
from the arithmetic mean, B, is the square of the skewness £,
o 1s the standard deviation, and 8 1s the measurc of flatness.
This general law obviously gives rise to several special laws
depending upon the functional form of the solution of (51). In
turn the form of the law depends upon the values of 8; and 8.,
as illustrated in Fig. 48. The upper part of this figure shows
some of Pearson’s laws fitted to observed data, the corre-
sponding values of 8, and B: being given at the bottom of the
figure.

It is shown in elementary treatises on frequency curves
that some of the laws [solutions of (51)] are valid for whole
areas in the g18: plane; whereas others are valid only for
points lying on a certain curve; still others only for one point
as 1s the normal law which corresponds to the point g, = o,
B2 = 3, as is readily seen by substitution of these values in
(51). Pearson and his followers claim that these laws have
been found to cover practically all cases coming to their
attention.
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The other important general law is the Gram-Charlier series

1 k 1
f@) = ~¢0(z) [I - ~3—!(3z —F)+ 6~ 9G - 62% + )
+ 3—<1ok - i)( — 152+ 1023 — 2%)
5! d”

K. 3 "
B CatEE R [CR TR TP R C

1 s : .
where ¢0(z) = ~———=¢ 2,and z = *. By taking enough terms
2w a
and using the proper parameters, this law may be made to fit
almost any frequency distribution.

10. Exact and Statistical Laws—.A Comparison

Perhaps the most important characteristic difference be-
tween an exact and a statistical law 1s that the former states
something that is true for a single thing or event, whereas the
latter states something that is true on the average or in the
long run. The exact law applies to the individual thing,
whereas the statistical law applies to a group of the same kind
of things.

In general we like to think that exact laws apply under
conditions where the physical phenomena are quite well
understood, as is true for the current through a simple circuit
discussed at the beginning of this chapter. In a similar way,
we think of statistical laws as applying where the details of
the phenomena are not so thoroughly understood. Between
these two apparent extremes lies that great body of facts or
data which have not been cxplained in terms of either of the
two kinds of laws just considered;" yet even here we find rules
or laws which make possible a kind of prediction. Two illus-
trations will serve to clarify this statement.

We have already called attention to the problem of the
economists in forecasting business conditions. There are
companies devoting all their time to forecasting. In general,
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they claim to have discovered a way of breaking down a time
series, such as that shown in Fig. 44, into four parts:

(a) Trends, (¢) Seasonals,
(4) Cycles, (d) Erratic Fluctuations.

An outline of the technique involved in such a study is given
in most of the elementary books on business statistics. A
rule for forecasting developed in this way is sometimes called
a law although most people would, to say the least, probably
insist on calling it an empirical law. To refer to it as an em-
pirical law, however, is somewhat misleading, because any
law, insofar as it is derived from experience, is empirical.
This point we shall have occasion to emphasize again and
again as we proceed. Perhaps the best that we can say is
that the degree of empiricism is greater in this case than it is
in the case of the so-called exact or statistical laws already
considered.

Such rules as are used in business forecasting have to do
in gencral with data, the causal explanation or interpretation
of which is not thoroughly understood. In other words,
here, as in the case of statistical laws, the phenomena themselves
are to a large extent attributable to chance or unknown causes.
It should be noted, however, that here probability theory does
not apply directly because the conditions for the law of large
numbers do nrot hold. This point has been emphasized by
Persons.! In other words, probability theory does not apply
simply because a phenomenon is attributable to chance causes.

Let us next consider the phenomenon of growth which
comes nearer to being reduced to an exact law than does that of
customary economic time series. The literature on this subject
is very extensive. Fig. 49 shows the forecast of the population
growth of the United States.? It is interesting indeed to see
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how closely the observed points fall on this logistic curve,
the equation for which is

197.27 .
S T o g2 uE (53)

By means of this law, Pearl predicts the future course of
population growth to the year 2100, at which time the popula-
tion is to be approximately 197,000,000.

The general law of growth

Y= d+ 1+ (au t aga?+agrs+ tanr” (54)
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is shown by Pearl to be applicable to a large number of dif-
ferent kinds of populations, and for this reason it may be
claimed that the law is less empirical than the laws used in
forecasting business conditions. It would perhaps be generally
agreed, however, that this law of growth is more empirical
than Newton’s laws of motion.

If we were to observe the growths in population for a
large number of pairs of fruit flies, we could expect upon
the basis of the work of Pearl and others, that these growths
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would vary about the law of growth. It seems reasonable tc
believe that we would find a statistical distribution at any
point along the line as indicated in Fig. 50. Such a phenomenon
is of interest because it suggests the possibility of the use of
probability theory in predicting the deviation from this line—
something that economists in general feel cannot be done in
connection with economic forecasts.

The causal basis for this frequency distribution might be
set up after the manner in which hereditary influences are
explained by Whittaker and Robinson.! They assume that

POPULATION

TIME

Fic. so.—SraTistical. DisTRIBUTION ar ANy Poini 1N A Law oF Growrn.

the chest measure of an individual, for instance, is the result
of a very great number of chance causes present in the heredity
and environment of the individual. This suggests a type of
law derivable upon a causal basis similar to that involved in
the study of chemical kinetics. The growth curve under
these conditions may be thought of as an exact law, and the
distribution about this curve at any point may be thought of
as a statistical law. Tn other words, the general law of growth
may be a combination of exact and statistical laws. - This
suggests another viewpoint in respect to the so-called exact
law which is worth considering briefly.

As an illustration of an exact law, we have used the dif-

Y The Calculus of Observations, Blackie & Son, Ltd., London, p. 167.
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ferential equation relating the current in a circuit to the
inductance, capacity, and resistance of that circuit. The cur-
rent, even though it appears to be continuous, is really a
flow of a number of discrete units of charge or electrons. Thus,
if we could see what is actually taking place when the current
appears constant, we would likely find that the number of
electrons per second passing a given point is not constant.
The apparent constancy is, as in the case of the pressure of the
gas, the result of the law of large numbers. Hence we see that
our exact law is, in the last analysis, statistical in the sense
that the current is a phenomenon obeying the law of large
numbers. It should also be noted that all exact laws are sub-
ject to statistical laws of error about which we shall hear
more as we proceed.

11. Summary

From what has been said in this chapter, it seems reasonable
to draw the following conclusions:

A. It is not feasible to make pieces of product identical
one with another. Hence a controlled product must
be one of variable quality.

B. To be able to say that a product is controlled, we must
be able to predict, at least within limits, the future
variations in the quality.

C. To bec able to make such predictions, it is necessary
that we know certain laws.

D. These laws may be exact, empirical, or statistical.
Exact laws are generally stated in terms of the differ-
ential equations of physics and_chemistry. Statistical
laws are the frequency distributions arising from the
very general law of large nimbers. All other laws are
empirical. The technique of finding and using exact
and statistical laws is better established than that of
finding and using what we term empirical laws.



CHAPTER XI
StatisticaL CoNTROL

1. Conditions for Control

If there is a causal orderliness in events and phenomena
as we postulate, then it follows that, to one with perfect
knowledge, everything 1s predictable and therefore controlled.
However, for practical purposes the quality of product is
controlled only to the extent that we know the laws that make
prediction possible. For one to be able to say that a phenom-
enon is controlled, it 1s necessary and sufficient that he know
the laws which make prediction possible.

In practice, however, we must start with an observed
set of data representing the fluctuations in some phenomenon
and try to determine from these whether or not the product is
controlled.  Such a procedure involves, as do all scientific
attempts to discover natural laws, logical induction in that
we must employ some such argument as this: Since the
observed fluctuations are such as might have occurred provided
the phenomenon obeyed such and such laws, then it foilows
that these laws do control this phenomenon; whereas all that
we are rigorously justified in saying is that these laws may
control this phenomenon. For this reason we perhaps never
can say that the behavior of a phenomenon in the past is
sufficient to prove that the phenomenon is controlled by a
given set of known laws. All that we can ever say is that
experience has shown that such behavior appears to be sufficient.

Furthermore it is a significant fact, as we have seen in
the previous chapter, that empirical laws do not make possible
the prediction of erratic fluctuations upon the basis of prob-
ability theory. If product is controlled only in this empirical
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sense, it follows that we cannot obtain the economic advantages
discussed in Part I. For this reason it is desirable to attain
the state of statistical control in which the natural law of large
numbers makes prediction possible.

2. Necessary and Sufficient Conditions for Statistical Control

We shall assume that the necessary and sufficient condition
for statistical control is that the causes of an event satisfy
the law of large numbers as do those of a constant system of
chance causes. If a cause system is not constant, we shall
say that an assignable cause of Type 1 is present. Assignable
causes of this type in an economic series are such things as
trends, cycles, and seasonals; and in a production process,
they are such things as differences in machines and in sources
of raw material.

Stated in terms of cffects of a cause system, it is necessary
that differences in the qualities of a number of pieces of a
product appear to be consistent with the assumption that
they arose from a constant system of chance causes. We
say appear because, as is always the case in trying to find a
law controlling a phenomenon, we can never be sure that we
have discovered the law. Obviously such appearance is not
sufficient in the logical sense although it must be in the practical
sense.

3. Necessary and Sufficient Conditions—Continued

Let us see how the law of large numbers gives a basis for
determining from the observed fluctuations in a phenomenon
whether or not it is statistically controlled. For this purpose
let us consider the practical prob]em presented in Part I,
Chapter 11, Paragraph

If this product is statlstrcally controlled, there is an objective
probability p that a piece of this product will be defective.
It follows, as we have seen in our previous discussion of experi-
mental evidence for the existence of the law of large numbers,
that the observed fractions defective in successive samples of
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size # should be clustered or distributed about the value
2 = p in accord with the terms of the point binomial (q + p)"-

Graphically this means that, if we take the observed values
of the fraction defective p as ordinates and a series of numbers
corresponding to a sequence of samples of size 7 as abscissae,
the observed fractions should be distributed about the ordinate
p after the manner indicated schematically in Fig. 51.

The frequency distribution of values of p observed in an
infinite sequence of samples of size # should be some curve

FRACTION DEFECTIVE p
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such as that indicated at the right of the figure. This is the
picture of what happens in this very simple case deduced from
the postulated law of large numbers.

The practical problem involves induction instead of de-
duction. We start with a sequence of observed values of the
fraction defective, and from this we try to determine whether
or not the quality as measured by fraction defective is sta-
tistically controlled. As indicated in Part I, the method of
attack is to establish limits of variability of p, represented by
the dotted lines parallel to the line p = p in Fig. 51, such that,
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when a fraction defective is found outside these limits, looking
for an assignable cause is worth while.

How to establish these limits is the question of utmost
importance, because it must be satisfactorily answered if
statistical control of a production process is to be a practical
objective. Experience like that presented in Part I leads us
to believe that it is feasible to establish workable rules for
setting these limits. These rules will be presented in Part VI.
For the present we shall confine our attention to a consideration
of some of the fundamental problems which must be considered
in the establishment of a scientific basis for setting such
limits.

A. Obviously, it is not possible to observe an infinite
sequence in order to discover the objective probability p
even though it exists and is discoverable in this way. In
practice, therefore, we must substitute some experimentally
determined value for the objective value p.

B. Assuming for the sake of argument that in some manner
we have found the true objective value p, it follows from what
has previously been said that, no matter how we set the limits
about the line p = p (so long as they are not outside the limits
of the frequency distribution at the right of Fig. 51), some of
the observed fractions will fall outside these limits. Therefore,
if we look for trouble in the form of assignable causes of Type 1
every time an observed fraction falls outside these limits, we
shall look a certain number of times even though none exists.
Hence we must use limits such that through their usc we will
not waste too much time looking unnecessarily for trouble.

C. The fact that an observed set of values of fraction
defective indicates the product to have been controlled up to
the present does not prove that we can predict the future
course of this phenomenon. We always have to say that
this can be done provided the same cssential conditions are
maintained, and, of coursc, we never know whether or not they
are maintained unless we continue to experiment. If experience
were not available to show that a state of statistical equilibrium
once reached is usually maintained, we could not attain most
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of the economic advantages of Part I. Evidence of the type
given in Figs. 6 and 11 seems to justify our belief in the con-
stancy of the condition of statistical equilibrium when it is
once attained, subject to the limitation that there is no a priori
reason for believing that an assignable cause has entered the
production process.



CHAPTER XTI
Maxmmum CoNTROL

1. Maximum Control Defined

The object of industrial research is to establish ways
and means of making better use of past experience. To do
this 1t 1s essential that research reveal natural laws. The
ideal goal sometimes pictured for research is complete knowl-
edge of all the laws of nature so that one could predict the
future course of all phenomena. The belicf in the existence of
such a goal rests upon the assumption of a causal orderliness of
the universe.

If a manufacturer could tell what the quality of each
piece of product is going to be, or, more generally, if we could
predict exactly the future course of a phenomenon, then we
could say that this quality or phenomenon exhibited maximum
control. This amounts to assuming that, with perfect knowl-
edge of the universe, it would be possible to obtain exact
control of quality of product because the element of chance
fluctuation in quality could be removed.

It is important to notc, however, that such a goal is neither
feasible nor economic. To ecmphasize this point, let us take
a very simple illustration. All of us are perhaps willing to
admit that it is not feasible to find.the causes which control
the course of a single molecule of a gas. It is also reasonable
to believe that there is a state reached in the control of quality
beyond which it is just as foolish to try to go as it is to try to
find the causes of the motion of a given molecule.

Suppose, however, that we did have knowledge which
would enable us to set down the differential equations of motion
of a system of molecules. Assuming that one could solve
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these, a little calculation shows that he would have to live
something like 10'? years to set down his results for only
a thimbleful of molecules at room temperature even though he
worked 12 hours per day. Obv1ously the results of such perfect
knowledge would not be usable in an economic sense.

In other words, it is believed that there is a limit beyond
which it is not economically feasible to go in trying to eliminate
chance fluctuations.

Common sense guides us in setting conditions to be satisfied
by a cause system in a state of maximum control. If one
were ill and were told by his physician that there were likely
a very large number of causes of his illness, he would feel
more discouraged about his condition than he would if he were
told that there was only one cause. This follows because it is
customarily found to be difficult to ferret out and assign a
single cause of illness when there are several unknown causes.
What has just been said is true subject to the limitation that
each cause produces practically the same effect as any other.
Naturally, if one of the causes is known to produce a pre-
dominating effect, a person will feel that there is greater likeli-
hood of his being able to find this cause than if each of the
causes produces the same component effect. This kind of
experience leads us to postulate that it is not feasible to explain
in terms of specific causes those phenomena which are attribut-
able to a very large number of causes such as the throw of a
head on a coin, the motion of molecules, the daily fluctuations
in the price of a stock, hereditary influences, and so on.

Therefore maximum control for our purpose will be defined
as the condition reached when the chance fluctuations in a
phenomenon are produced by a constant system of a large
number of chance causes in which no cause produces a pre-
dominating effect.

However, in order that these conditions for maximum
control may be of practical use, they must be expressed in
terms of the effects of the causes. This is obviously necessary
because we cannot find out anything about the causes except
through their effects. We shall soon discover that serious
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difficulties are involved in trying to set up necessary conditions
for maximum control in terms of the distribution of effects of
a constant cause system.

2. Characteristics of Maximum Control—Molecular Phenomena

At first thought one might expect to find that the dis-
tribution of displacements of a particle undergoing Brownian
motion should be characteristic of maximum control. Since, as
previously noted, this distribution is normal and corresponds
to the point (o, 3) in the iB: plane (Fig. 52), one might be
led to ask if there is an obiective point of maximum control.

B
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As we have already seen, however, the distribution of
molecular velocities is not normal even though this distribution
obviously arises under a condition of maximum control to the
same extent as does the distribution of displacements. This
fact alone is sufficient to show that there is not an objective
point of maximum control.

3. Necessary Conditions for Maximum Control—Simple Cause
System .
Let us assume that there are a finite number 7 of inde-
pendent causes,
CI,Cg,...,Ci,...,Cm,
and that the resultant effect of these causes is the sum of their
individual effects.
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In one case let us assume that these m causes produce
effects
Xiy X2y « v o 3 Xy o o o 3 X'm

respectively, with probabilities

plyp.‘!,-- -,P’i,... ,Pm.

In the other case let us assume that the probability of the
ith cause ( = 1, 2, ..., m) producing a contribution x in the
interval x to x + dx is

fi(x) dx.

A little consideration shows that such systems may be said
to exhibit maximum control when:

= pj filx) = fi(x)
xi =xj and m large. (55)
m large,

Obviously the first set of conditions gives rise to a dis-
continuous distribution, the ordinates of which are the terms of
the point binomial (7 4+ p)™ where the effect of each cause is
assumed to be unity. As we know, such a distribution is
smooth and unimodal. Hence smoothness and unimodality
are necessary conditions for maximum control in terms of
effects for this simple discontinuous cause system.

It is readily shown for the point binomial that

b1 and B =34+ —L.

pym pym

From these equations we sce that no matter what the values of
p and ¢ are, the values of 81 and B approach the normal law
values o and 3 respectively as 7 becomes large. This state of
affairs 1s shown graphically in Fig. 53. Hence we see under
what conditions the distribution of effects for such a sifple
cause system approaches normality, characterized by 81 = o
and B2 = 3. Of course, the condition that 8 = o and
B2 = 3, although necessary for normality, is not sufficient.

To one not accustomed to think of distribution functions
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in terms of 81 and B:, Fig. 54 is of interest because it gives two
binomial distributions fitted by theoretical curves. In the one
case p = ¢ = § and the number m of causes is 16. In the other
case p = 0.1, ¢ = 0.9, and m = 100. This figure illustrates
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the rapid approach to normality with increase in the number
of causes irrespective of the value of p.
For the continuous cause ‘'system, it may be shown! that

_B _B:—3
ﬁl—m and B = - + 3, (57)
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where B; and B: represent the distribution of the resultant
effect of the operation of m continuous causes and B and Bz
represent the cause function f(x). From (57) we see that no
matter what the distribution function of a cause is, the dis-
tribution function of the resultant effect will approach nor-
mality as the number m of causes increases indefinitely.

The rate of approach to normality, however, is much
more rapid than we might at first expect, as we shall see in
Part IV in our discussion of the distribution function of the
arithmetic mean.

4. Necessary Conditions—Some Criticisms

That chance causes produce equal component cffects is
obviously not a necessary condition for maximum control,
although the discussion of the previous paragraph is thus
limited through (55). Thus, in our previous reference to the
difficulty of ferreting out a cause of illness from among many
causes, it was not necessary to impose the restriction that
the causes should produce equal effects. On the other hand,
some restrictions must be placed on the relative magnitudes of
the effects as well as upon the number of effects in order that
it appear reasonable that one cause may be separated from the
others. For example, few of us, strictly speaking, are ever ill
from a single cause, and yet we know that causes of illness
are findable. It is perhaps enough to insure feasibility of
discovery of a cause that the effect of this cause be large
compared with the resultant effect of all others. It is not
possible, however, to say how large the effect of one cause
must be in respect to the resultant effect in order that it be
discoverable. Hence we cannot write down explicit require-
ments to be fulfilled by a cause system in order that it represent
the state of maximum control.

However, so long as one cause does not produce an effect
greater than the resultant effect of all the others, it seems
reasonable to believe that considerable trouble will be expe-
rienced in discovering this cause when there are a large number
of other causes. With this restriction on the relative mag-
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nitudes of component effects, the distribution of resultant
effects may be shown to approach normality as the number of
causes is increased indefinitely subject to limitations of no
practical interest. Perhaps this fact gives credence to a some-
what widespread popular belief that normality is a limiting
condition approached whenever the number of causes is large.

Before too much significance is attached to this fact we
must recall that, as shown in the second paragraph of this
chapter, normality cannot be, rigorously speaking, a necessary
condition for maximum control.

I'rom a practical viewpoint we are most concerned with
the need for sufficient conditions for maximum control. We
want to be able to say that, since the distribution of observed
effects of a chance cause system is of such and such nature,
therefore the cause system is in the state of maximum control.
Neglecting for the present the limitations of all inductive
inferences of this type, let us see if approximate normality is
a sufficient condition for maximum control.

That this condition is in itsclf not sufficient can easily
be seen by looking at Fig. 55. Here we have two identical
normal curves (broken curves) with their averages separated
by one and one-half times the standard deviation of either.
The result of compounding these two distributions is shown
by the black dots. The smooth solid curve is a normal one
fitted to the resultant distribution. Supposc now that product
comes from two sources, the corresponding qualities being
distributed normally as shown by the broken curves. Obviously
we could not readily detect the existence of the difference
between the two sources by an examination of the resultant
curve assuming normality to indicate maximum control. The
possibility of such a situation arising in practice, however, is
precluded, if we apply the fest for maximum control only in
those cases where we have first assured ourselves that the
data exhibit statistical control.

For these reasons it is believed that approximate normality
of an observed distribution arising under controlled conditions
may be taken as indicating that the cause system is in a state
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of maximum control. On the other hand, the fact that an
observed distribution is not approximately normal is not
sufficient evidence that the phenomenon is not in the state of
maximum control.

Some may argue that there exists a general law charac-
teristic of the state of maximum control. Suppose then that
we make such an agsumption. In practice we would always
try to fit the observed distribution with this general law; and,
having successfully done this, we would argue that the phe-
nomenon exhibited maximum control. Since one can fit almost
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any distribution by taking enough terms in a general law such
as the Gram-Charlier series, the conclusion that the phe-
nomenon exhibits maximum control is foreordained. For this
reason it does not appear that much is to be gained by such
a test.

5. Some Practical Conclusions — *

It appears that there is no characteristic of an observed
distribution which in itself is sufficient to indicate a state
of maximum control. If, however, the effects appear to have
arisen under controlled conditions and at the same time
exhibit normality, there is good reason to believe that a state
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of maximum control of the cause system has been reached.
The occasions when these two conditions are satisfied, however,
are so rare that the test is of little utility. We have also
seen that normality of a distribution is not a necessary con-
dition for maximum control.

When a phenomenon has been shown to exhibit control,
we have likely gone about as far as we can in detecting the
existence of assignable or discoverable causes by standard
tests. Our experience shows that after assignable causes of
Type 1 have been found and eliminated, the observed dis-
tribution is usually smooth and unimodal. Furthermore,
most distributions exhibiting control have been found to be
sufficiently near normal to be fitted by the first two terms of
the Gram-Charlier series previously referred to as the second
approximation (23).






Part IV

Sampling Fluctuations in Quality

A Discussion of the Sampling
Fluctuations in the Simple Statistics
Used in the Control of Quality






CHAPTER XIII

SampLING FLucTuaTIONS

1. Sample

One dictionary definition of sample is: ““A part of anything
presented as evidence of the whole.” Thus, the people living
in New York City constitute a sample of those living in the
United States. The top layer in a barrel of apples is a sample
of those in the barrel. The fish taken from a lake are a sample
of those in the lake. The instruments inspected from the
product of a given day constitute a sample of that day’s product.
In each of these instances, the whole of the thing sampled is
finite in the sense that there is a finite number of people in the
United States, apples in a barrel, and so on.

We may, however, think of any one of these samples as
a sample of the whole of the possible number of things which
the same cause system could produce if it continued to function
indefinitely. In this sense the product for a given period is a
sample of that which can be produced by the same manu-
facturing process. Millikan’s measurements of the charge
on an electron are a sample of the indefinitely large number of
measurements that can be made by this method.

On the one hand, we are interested in what the sample
tells us about a finite lot or number of things. On the other
hand, we are interested in what the sample tells us about the
cause system producing the sample—in this sense all our
experience is a sample. Thus the data used in establishing
natural laws is a sample from the possible infinite set of data
that these laws could give. '

2. Sampling Fluctuations

Even though produced under essentially the same con-
ditions, no two things are identical in the sense that no two
163
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apples on the same tree are identical. The differences, as
we have said, are attributed to the effects of chance or unknown
causes. If we look at one thing after another produced under
presumably the same conditions, we find that the quality
varies from piece to piece. Such variations are called sampling
variations or fluctuations.

These sampling variations may be produced by either
variable or constant systems of chance causes. As seen in
Part IIl, there is reason to believe that we may find and
eliminate variable chance causes, but not those of a constant
system in which there is no predominating cause. Hence we
must always have sampling fluctuations in the quality of
product. However, if produced by a constant system, they
are controlled sampling fluctuations in that they can be pre-
dicted by well-established probability theory.

3. Simple Illustration of Sampling Fluctuations

Let us start our study of sampling with an experiment
in which 4,000 drawings of a chip from a bowl were made with
replacement; that is, after drawing a chip, it was replaced and
thoroughly mixed with the others before another was drawn.

In the bowl there were 998 circuiar chips on each of which
there was a number. Forty chips were marked o, 40 were
marked — 0.1, 40 were marked + o.1, and so on as shown
in Table 22. Before replacing a chip in the bowl, the number
was recorded. The 4,000 obscrved values are given in Table A,
Appendix II.

In this experiment we have as near an approach as is
likely feasible to the condition in which the law of large numbers
applies! since, to the best of our knowledge, the same essential
conditions can be maintained. The differences between
successive numbers drawn are beyond our control.

Dividing the observed values into four sets of 1,000 each,
we get the four grouped frequency distributions of columns 3,
4, §, and 6 in Table 23. Column 2 gives the corresponding
distribution in the bowl.

1 Cf. Paragraph 3, Chapter X, Part 111.
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TaBLE 22.—MARKING ON 9y8 Cnips For SAMPLING EXPERIMENT
Marking | Number || Marking | Number Marking | Number || Marking | Number
on Chip of on Chip of on Chip of on Chip of
R Chips X Chips X Chips X Chips
—-30 1 —13 13 oo 40 s 13
—29 1 -1 4 15 o1 40 16 I
—2 8 1 -1 3 17 o2 39 17 9
—-27 1 -1 2 19 o3 38 18 8
-26 1 —I1 22 o4 37 19 7
-2 3 2 —10 24 o3 35 20 5
-2 3 2 —0 9 27 o6 33 21 4
-2 3 3 -0 8 29 o7 31 22 4
—22 4 -0 7 31 o8 29 23 3
—2 1 4 -0 6 33 09 2 2 4 2
-2 0 5 —0o 3 35 10 24 23 2
—Iy 7 —0 4 3 11 22 26 1
~1 8 8 -0 3 38 12 19 27 1
-17 9 —0 2 39 13 17 28 1
-16 11 —0 1 40 14 15 2.9 1
RIS 1

TaBLE 23-—Grourrp FreQueNcy DrsiriBurioNs IN SamrLING ExperIMENT

Observed Distributions
Cell IDistribution
Midpoint in Bowl
Sample No. 1 [Sample No. 2 {Saumple No. 3 |Sample No. 4

—30 3 5 T 2 2
-2 5 9 9 I4 10 9
—20 28 36 24 29 25
—15 65 55 51 2 49
—10 121 123 113 124 112
—0 § 174 165 187 181 191
o 198 203 ¢ 19§ 180 204
o5 174 172 176 169 182
Io0 121 123 125 120 143
15 65 68 71 67 64
20 28 31 31 32 26
2.6 9 8 8 11 12
30 3 2 4 3 2
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As is to be expected, no two of the observed distributions
are the same, and no one of them is the same as that in the
bowl. In fact the differences between these five distributions
are quite marked as is evident from their graphical presen-
tations in Fig. 6. The differences look much like those previ-
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ously shown in Fig. 19—so much so,.in fact, that one might
hesitate to say that the distributions in F1g 19 reveal any
evidence of lack of statistical control, although as we shall
soon see, an assignable cause was present in that case. Hence
we see that we may be misled if we depend upon the qualitative
appearance of deviations to indicate the presence of an assign-
able cause. What we need in such a case is some quantitative
measure of the deviation of the distribution in a sample from
that in the bowl to be used as a basis for detecting lack of control.
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4. Sampling Fluctuations in Simple Statistics

We shall use simple statistics such as the average X,
standard deviation o, skewness # =+/B;, and flatness 8; for
expressing quantitatively the differences between the observed
distributions. For example, columns 2 to § of Table 24 give
the observed values of these statistics for the four observed
distributions of Table 23. We see how the observed distribu-
tions differ quantitatively in respect to these simple statistics.
Column 6 of Table 24 gives, for comparison purposes, the
values of these same statistics for the distribution in the bowl.

TABLE 24.—OBsERVED VALUES OF StatisTics For DistriBuTioNs GIVEN IN TABLE 23

Obscrved Istributions
Distribution

Sample Sample | Sample Sample in Bowl

No. 1 No. 2 No. 3 No. 4
Average 0 oo1§ 0 043§ |—O0 oobo o 0363 o
Standard Deviation 1 0219 1 0019 1 0317 0 9739 I 0070
Skewness . —o0 0yo3 |[—o o126 0 ch31 0 0038 o
Flatness . 2 9257 2 99o4 2 7996 3 0757 2 gjo2

Instead of performing such an experiment to determine how
samples differ, we try to predict such variability in the prob-
ability sense. To do this, we must find the distribution func-
tions of averages, standard deviations, and other statistics in
samples of size » drawn from the distribution in the bowl.
Usually this is a complicated mathematical procedure, as we
shall soon see. Therefore, to begin with, we shall take a simple
example in which the distribution functions can be derived by
elementary arithmetic.

5. Simple Problem in Prediction of Sampling Fluctuation—
Problem of Distribution

Suppose that there are just four similar chips in a bowl,
and that these are marked 1, 2, 3, and 4 respectively. Suppose
that samples of 4 are to be drawn with replacement. The
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problem to be considered is the prediction of sampling fluctu-
ations in the simple statistics.

Since the number of ways of choosing » things from »
things where each of the » things may be any one of the »
things is #", it follows that a sample of four may be chosen
in 4* = 256 different ways. Obviously not all of the 256
samples will be different. A little study will show that the
different possible samples are those given in Column 1 of
Table 25, and that the number of ways in which these may
be drawn are as given in Column 2. The corresponding dis-
tributions of statistics X, o, £, and B2 can now be set down
as in the last four columns of this same table. The frequency
distributions of these and certain other statistics are shown
graphically in Fig. 57.

It is of interest to note that the method of finding the
distributions in Fig. 57 is purely an analytical one involving
simple arithmetic. One sets down all of the possible samples
of size four that can be drawn from the bowl, and then finds
the averages, standard deviations, and other statistics for this
set of possible samples.

If we assume that the sampling fluctuations in the statistics
of samples drawn from such a bowl satisfy the law of large
numbers, it follows from evidence given in Part 1l that
the observed distributions of statistics in samples of size four
may be expected to approach! as statistical limits the respective

! This involves the assumption that similar in the phrase “similar chips” has the
significance of the phrasc “equally likely” so often used in probability theory. It
seems reasonable to belicve, however, that “equally likely” 1s a concept which has
significance for the external world rather than for mathematics. On this point it will
be of interest to read ** Probability as Expressed by Asympototic Limits of Pencils of
Sequences,” by E. L. Dodd, published in the Bulletsn of the American Mathematical
Society, Vol. 36 (1930), pp. 299-305. For example, he says: “In pure mathematics,
the word probability may be taken to signify sitaply the ratio of the number of objects
in a subset to the number in the set, so long as discrete or arithmetic probability is
being considered. It is, indeed, as far outside the field of mathematics to determine
whether two events are equally likely as to determine whether two bodies have the
same mass. Fven in the applications, the role of pure mathematics is merely to count
expeditiously the elements of sets and subsets, or, more generally, to determine certain

measures of sets, which are believed by competent judges to depict adequately situa-
tions in the external world.”
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TABLE 25.—SiMPLE ProBLEM 1IN DistriBUuTION THEORY

Number
Sample 0:: Times X g k B2
Sample
QOccurs
1111 1 1 00 o o )
2222 1 2 00 o o I .
ndeterminate
3333 1 3 o© o °
4444 1 4 0O o o
1112 4 12 0 4330 1 1547 2 3333
1113 4 1 50 o 8660 11847 2 3333
LRAL + 175 T 2990 T 1547 2 3333
2221 4 175 O 4330 — 1547 2 3333
2223 + 2 24 0 4330 T 1547 23333
2224 4 2 50 o 8660 11547 2 3333
3331 4 2 g0 o 8660 —1 1547 23333
3332 4 275 O 4330 — 1 1547 2 3333
3334 4 32 © 4330 1 1547 2 3333
4441 4 32 12990 —T 1547 23333
4442 4 3 50 o 8060 —1 1547 2 3333
443 4 375 © 4330 — 1 1847 2333
1122 O I g0 O §O0O o 1 0000
1133 0 2 00 1 0000 [ 1 0000
1044 0 2 §o 1 goou o 1 0000
2233 6 2 50 0 gooL [¢] 1 0000
2244 6 3 0o 1 0000 [} 1 0000
3344 6 3 5o O fooo © 1 0000
1123 12 1 7% o 8292 0 4934 1 6281
12y [ 2 00 12247 o 8163 2 0000
1134 12 226 1 2990 o 2138 1 2798
2213 12 2 oo 0 7071 o 2 0000
2214 12 228 1 0897 o 6520 2 0970
2234 1 275 o 8292 0 4934 1 6281
3312 12 22 o 8292 —0 4934 1 6281
3314 12 275 ° 1 0897 —o f520 2 ogyo
3324 12 3 oo o 7071 o 2 0000
4412 2 278 1 2990 —o 2138 T 17(;8
4413 12 J oo 1 2247 —o 816% 2 0000
1423 12 325 o 8292 —0 4934 1 6281
1234 24 2 50 1 1180 o 1 6400
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distributions of these same statistics shown in Fig. §7. In
general, the prediction of sampling fluctuations in statistics of
samples of size # drawn from a distribution such as that in
the bowl requires the knowledge of the distribution functions
of these same statistics. Observed fluctuations may or may
not have in them component effects of variable chance causes.

6. Relation of Sample to Universe

Let us now examine the relationship between some of the
simple statistics for the universe (Fig. §7-2) and the averages
or expected values of the distributions of these same statistics.
For example, Column 1 of Table 26 gives the values of some
of the simple statistics of the universe, and Columns 2 and 3
give the corresponding expected values for samples of size
four and oo respectively.

TanLe 26.-—Rrra110N oF SamrLr ro UNIVERSE

| . Sample Sample | Correction| Standard
Universe .
n=y4 n= w Factor | Deviation
Average 2 5000 2 {ooo 2 5000
Median ... 2 5000 2 £o00 2 5000
Root Mean Square
Deviat on 1 1180 o 9178 1 1180 12181 o 375

Mean Deviation 1 0000 o Bo¥h 1 0000 1 3826 0 4062
Skewness 4 o o o
Flatness g: 1 6400 17562 1 6400

The important thing to note is that the expected value of a
given statistic in samples of size n is not necessarily equal to the
value of this statistic for the universe so long as the sample size n is
a finite number. Suppose now that the statistics of the universe
are unknown although the functional form is known. We see
that, if we wish to estimate a given statistic for the universe
from that for a sample of size #, a correction factor is required.
Two such factors are given in Table 26 for the case in hand.

Another interesting point is that a statistic of the universe
may be estimated from the same or other statistics of a sample.
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Thus either 1.2181 times the standard deviation of a sample
of four or 1.3826 times the mean deviation of a sample of
four may be used as estimates of the standard deviation of
the universe (57-4). The standard deviations of these esti-
mates, however, are not equal. We say that one is more
efficient than the other. As a measure of this ¢ficiency! we
take the ratio of the squares of the respective standard devi-
ations. For the simple case under consideration the efficiency

. . (0.4052)?
of the root mean square estimate is ——=— = 1.1644.
(0.3755)*

It is suggested that the reader start with some simple
universe other than the one used in this chapter and find for
this chosen universe the distributions of the four simple
statistics for some sample size. By such a procedure, one
easily discovers that the distribution function of a given
statistic involves a sample size # and depends upon the func-
tional form of the universe. Tt is also discovered that, in
general, the correction factors required to go from the expected
value of a statistic in a sample of size # to the same statistic
of the universe depend upon the nature of the universe and
upon the size of the sample.

In other words, we come in this way to see that the problem
of interpreting a sample involves the specification of the universe
and the determination of the distribution function of a given
statistic in samples of a given sizc drawn from this universe.

1 This measure of efficiency is defined as follows: The standard deviation of the
mean of m, corrected roof mean square deviatrons (in samples of four) 18 0.37¢5'\ m,
while the standard deviation of the mean of m, corrected mean deviations in samples of
four is 0.4052/\/m,. If these two standard deviations are to be equal, we must have

0 3755 _ 0 4052 .

\/ my a\/ m;

Hence the efficiency of the root mean squarc deviation is
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7. The Problem of Determining the Allowable Variability in
Quality from a Statistical I'iewpoint

If the quality X of a product is statistically controlled,

the probability dy that a unit of this kind of product will have

a quality X lying within the range X to X + 4.X is expressible

as a function f of the quality X and m’ parameters, or formally
d_y = f(‘\v, )\1, )\g, ey kz, P Xm’)d'A’. (58)

We have seen that samples of size 7 drawn from such a product
exhibit sampling fluctuations. These fluctuations may be
measured quantitatively in terms of some statistic © of the
samples, such as average, standard deviation, etc. For each
such statistic there is some relative frequency distribution
function

f6(0, n),

representing the distribution of possible values of the statistic
0 in samples of size # drawn from the universe (58). Tt follows
that the probability dy, of an observed value of the statistic O
falling within the range © to © 4 40 is given by the rela-
tionship

dye = fo(0, 1)dO. (59)

In general, the distribution functions of the universe and
of the statistics may be either continuous or discontinuous.
Thus, in Paragraph 5 of this chapter we considered in detail
the distribution functions of several statistics for samples of
four drawn from a discontinuous universe. Later we shall
consider distribution functions for continuous universes.

An allowable variability in quality will be defined as one
that may reasonably be classed as a sampling flucthation, or,
in other words, one that may reasonably be attributed to the
effects of a constant system of chance causes.

In the next two chapters we shall consider in some detail the
nature of the frequency distribution functions characterizing
sampling fluctuations in some of the simple statistics previously
introduced.



CHAPTER XIV

SampLING FrucruaTions 1IN SIMPLE STATISTICS
UNDER StaTisticaL CoNTROL

1. Method of Attack

In this chapter we shall assume that the universe of possible
effects of the cause system is known, and that the sampling
fluctuations obey the law of large numbers. Distribution
functions of statistics basic in the theory of control and in the
establishment of quality standards are discussed in sufficient
detail to make clear their use throughout the remaining chap-
ters of the book.

Only those points are discussed which have been found
helpful in answering practical problems of the following type:

A. How shall we determine when quality is statistically
controlled?

How shall we establish standards of quality?

How shall we establish allowable limits in design?

How shall we establish allowable limits of variation
from standard quality?

How shall we select a representative sample of product?
How large a sample shall we take?

Im UOw

The reader primarily interested in such questions may
wish to turn immediately to those sections outlining the
answers which have been found satisfactory in practice. He
will find, however, that these questions, like many of those
confronting us every day, do not permit of answers which can
be considered as final. One common question will suffice as
an illustration of what is meant: What should a child learn

174
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in school? No one knows #4e answer to this question, and yet
we must adopt an answer in the form of an established cur-
riculum. For the most part, we have faith that students of
education having a knowledge of the fundamental difficulties
involved in getting the answer will be able to make progress
in that direction. Similarly, one interested in the answers to
the several questions stated in the previous paragraph will
find that some parts of the following discussion which at first
appear abstract and impractical may actually prove to be the
most helpful in the establishment of fundamental principles
upon which to base production methods.

Starting with the assumption that the universe of possible
effects of the controlled system of chance causes is of the form

y =10 A A My A,

we shall need to know the probability P that a statistic of
a sample of size # produced by this constant system of causes
will fall within the range 0, to 0: given formally by the
integral

o
P =j £6(0, 7)dO.
o

1

We shall find that the distribution function of the statistic
depends upon the function f of the universe of effects of the
cause system, and that the distribution functions of even the
simple statistics are unknown except for a very limited number
of forms of the function f. In fact, we shall find that for the
most part the distribution functions of the simple statistics
are known only when the distribution function f of the possible
effects of the cause system is normal.

Since, however, the normal function involves the assumption
that the variable X may extend from — o0 to 4 o0, and since
we do not know of any quality X" which rigorously satisfies this
condition, we see that the theoretical frequency distribution
functions which we are to use never can represent practical
conditions rigorously. In this same connection, much of the
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theory is based upon the assumption of continuity of the
observable values of the quality X; although this can never
be attained in practice because of inherent limitations in our
measuring instruments. Experimental results obtained by
sampling under controlled conditions are introduced to in-
dicate, in a more or less practical way, the significance of the
two limitations just stated.

Even when the distribution function £,(0, #) of a statistic ©
is not known so that we cannot calculate the probability P
that © will lie within a given range, the results of comparatively
recent theoretical work cnable us to obtain quite satisfactory
estimates of the probability P, provided we know the expected
value © of 6 in samples of size # and the standard deviation
0, of © measured about the expected value ©. Oftentimes
we know the moments of a distribution function, although
we do not know the functional form. The work of Tchebycheff
referred to in Part IT makes it possible for us to say that the
probability P, that an observed value of O will fall within
the limits © =+ s, satisfies the inequality

Pie, > 1 - ;]2‘

where ¢ is not less than unity. We may also use Tchebycheff’s
theorem to advantage when the indcfinite integral of the dis-
tribution function is unknown even though the function is
known.

Comparatively recent work has given us the expected
values and standard deviations of most of the statistics which
now appear to be useful in quality control work. Furthermore,
these expected values and standard déviations are known for
discrete and finite universes of the type which we have to deal
with in practice. Hence, we have available for use a certain
amount of theoretical work which is immediately applicable
to commercial conditions, and which enables us to state at least
a lower bound to the probability associated with a symmetric
range about the expected value of a statistic.
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Recently Camp! and Meidell 2 have shown that the prob-
ability Pye, satisfies the inequality

>
Pio, > 1 2.25%

provided:

(a) The distribution function f4(0, #) of the statistic ©
is unimodal with a modal value 6 coinciding with the
expected valuc 6.

(4) The distribution function f4(0, #) of the statistic ©
is monotonic on either side of the modal value.

Hence it follows that if we can show that the distribution
function of the statistic satisfies the Camp-Meidell conditions,
we can estimate the probability associated with a symmetric
range about the expected value within closer limits than we
can if we know nothing whatsoever about the form of the dis-
tribution function of the statistic. In certain instances it is
sufficient for practical purposes to be able to show that the
modal value is approximately equal to the expected value, and
that the distribution function is monotonic about the mode.
In this connection, it might be noted that the Camp-Meidell
relation applies strictly to a continuous function, although
it may easily bc shown that this limitation is of no practical
significance in the cases where we make use of this theory.

Experimental results are introduced wherever necessary
to bridge over gaps in available theory. These same experi-
mental results will be used extensively in the remaining chapters
of the book wherever we consider the problem of interpretation
of a sample.

In our discussion we shall use bold-faced type to in-
dicate the parameters and functional form of the universe of
effects of the cause system and also the expected values,
standard deviations, and other functions derived from known
distribution functions of statistics. The regular italic notation

t Camp, B. H., “A new Generalization of Tchebycheff’s Statistical Inequality,”
Bulletsn of the American Mathematical Sucsety, Vol. 28, 1922, pp. 427-432.

2 Meidell, M. B., “Sur un probléme du calcul des probabilités et les statistiques
mathématiques,” Comptes Rendus, Vol. 175, 1922, pp. 806-808.
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will be used for the corresponding observed characteristics of a
sample as indicated in Table 27.

TaBLE 27.— NorarioNs FOrR UNIVERSE AND SAMPLE

Universe Sample

])istnhution f( \: )\l. X-,v, ceey xm') f(\' Al‘ )\2» RRREINY )\m)
Fraction Defective or Fraction

within Given Limits E {,_
Average .. . X X
Standard Deviatior L 7
Skewness . . k= \/ﬁl k= \//5.
Flatness . . B: B2

2. Fraction Defective !

That" the fraction defective should play an important
role in modern production is at once apparent when one con-
siders that so many quality measurements are made with a
go-no-go gauge. It is but natural, therefore, to consider first
the nature of the sampling fluctuations in this fraction under
controlled conditions.

The distribution function for the observed fraction defective
p or fraction found between any two specified limits X, and X
in samples of size » drawn from a controlled product of any
functional form whatsoever is given by the terms of the point
binomial

(q+p". (60)

The expected value p, modal value p, and standard deviation
op of this distribution function are given by the following
relationships: 2

P=P=0p (61)

1 The derivation of the formulas cited in this paragraph are given in almost any
elementary text on statistical theory.

2 Of course the modal and expected values of p are not always equal. However,
the difference is too small to be of any practical importance in most applications.
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In these relationships p is the probability that a constant
cause system will produce a defective piece of product.

We see at once that the first distribution function (60)
that we have chosen is not normal. In fact, it is not even
continuous. As pointed out in Part 111, however, the point
binomial theoretically can be approximated quite closely by
the ordinates (or appropriate areas) of a normal curve of the
same mean value and standard deviation as the point binomial,
provided p 1s approx1mately equal to (1 —p) and 7 is very
large. We saw in this same connection, however, that the
approximation is quite good when p = 1 — p even if 2 is no
greater than 16; similarly when p = o.1 and # is no greater
than 100. This gives us, therefore, some idea of the degree
of precision which we can expect to attain by assuming that
the distribution of the observed fraction defective p is normal.

Since the modal and expected values of p may be con-
sidered equal, and since the discrete distribution can be quite
accurately fitted by a function satisfying the Camp-Meidell
requirements, it follows that the Camp-Meidell inequality
may be assumed to give a close approximation to the lower
bound of the probability associated with any symmetrical
range about the expected value p.  Knowing the standard
deviation of p, we may make use of the normal law integral
to calculate the probability that an observed fraction p will
fall within any two limits py and ps, provided the values of p
and #n are such that the normal law is a satisfactory approx-
imation. If the conditions are such that we cannot use the
normal law, we may always make use of this value of p and its
standard deviation in establishing limits with probability
bounds in accord with the Tchebycheff inequality.

3. Average—Normal Universe

Perhaps the arithmetic mean is used in engineering work
more often than any other statistic to express the central
tendency of a group of data. We shall therefore consider
next the fluctuation of this statistic in samples of size # drawn
from a normal universe. It is a simple matter to show that
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under these conditions the distribution of the average X is

normal with a standard deviation —— \/ , where o is the standard
n

deviation of the universe. So long, therefore, as we are dealing
with samples from a known normal universe, it is a very simple
matter to obtain from Table A the value of the probability
that an observed average will fall within any two arbitrarily
chosen limits. Hence, from a theoretical viewpoint, we need
give no further consideration to the distribution of the average
of a sample from a normal universe. It is of interest, however,
to see how closely experimental results may be expected to
check the theoretical ones, even though we cannot, for reasons
prev1ously cited, experiment with samples drawn from a strictly
normal universe.

Perhaps we cannot duplicate the conditions under which
we should expect to find agreement between theory and
practice more closely than by drawing chips from a bowl in
the manner described in the previous chapter. Obviously,
the distribution in the bowl is discontinuous and does not
extend to either side of the average beyond three times the
standard deviation; whereas a normal distribution is con-
tinuous and extends to infinity in both directions. It is of
interest, therefore, to note how closely the observed distribution
of 1,000 averages of four, KFig. 8, approaches normality.
The data of Table A, Appendix T, were divided as indicated
into 1,000 groups of four each.

4. Average—Non-Normal Universe

Even for so simple a statistic as an average, we do not
know the distribution function when the universe is not
normal.! We do, however, know the moments of this dis-
tribution function in terms of the moments of the universe.

! For exceptions see ““On the Means and Squared Standard Deviations of Small
Samples from any Population” by A. E. R. Church, Biometrika, Vol. XVI1I, pp.
321-394, 1926, and “On the Frequency Distribution of the Means of Samples from
Populations of Certain of Pearson’s Types,” by J. O. Irwin, Metron, Vol. V111, pp.
§1~-106,
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As in the case of averages from a normal universe, the expected
value of averages is the average X of the universe. Similarly,

. C e . L

the standard deviation ok of this distribution is equal to 7
n

where o is the standard deviation of the universe. With this
information we are in a position to apply Tchebycheff’s theorem.
We may do better than this, however, because it is known
that the skewness kx and the flatness B3z of the distribution
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= NORMAL DISTRIBUTION
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of averages are given in terms of the corresponding functions
of the universe by the following expressions:
3 k
Y = 5
Vn

B~
g = + 3.

k
(63)

From (63), we see that, if the sample size » is made large
enough, no matter what the skewness and flatness of the
universe are, the skewness and flatness of the distribution of
averages of samples of size » approach normality as charac-
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terized by the values o and 3 respectively. It remains for us
to show that, even for comparatively small values of #, the
distribution of averages may be considered to be normal to
a high degree of approximation, thus making possible the use
of the normal integral, Table A, in establishing sampling limits.

Again we shall appeal to the use of experimental data.
Tables B and C of Appendix IT give the results of 4,000 draw-
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Fi6. 59.—UN1vErsks AND DIsrrIBUIIONS OF AVERAGES FROM RECIANGULAR AND
Richr TriaNGuLar UNIVERSES.

ings with replacement from cach of the universes, rectangular
and right triangular, described in Table 28. Fig. 59 gives the
observed distributions of averages of 1,000 samples of four
for each of the two experimental universes. To show how
closely these observed distributions actually approach nor-
mality, we have drawn smooth normal curves having expected
values and standard deviations determined from theory upon
the basis of our knowledge of the universes. The closeness
of fit is striking and illustrates the rapid approach of the
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distribution to normality as the sample size is increased.
Such evidence, supported by more rigorous analytical methods
beyond the scope of our present discussion, leads us to believe
that in almost all cases in practice we may establish sampling

TABLE 28.—MARKING oN CHirs For FxPERIMENTAL UNIVERSES

Rectangular Universe

!

Right Triangular Universe

Marking | Number | Marking
on Chip of on Chip
X Chips X
-3 0 2 oo
—2 9 2 o1
—2 8 2 o2
-27 2 © 3
-2 6 2 o4
-2 5 2 [ol'Y
—2 4 2 o6
-2 3 2 o7
—2 2 2 o8
-2 1 2 09
—20 2 10
-1 9 2 11
-1 8 2 12
—17 2 13
-1 6 2 14
—1 5 2 15
-1 4 2 10
—1 3 2 17
-1 2 2 18
—11 2 Iy
—10 2 20
—0 9 2 21
—o 8 2 22
—0 7 2 23
-0 6 2 24
-0 5 2 25
—0 4 2 206
-0 3 2 27
-0 2 2 28
=0 I 2 29

3o

Number
of
Chips

I N S A T > e b I S P A I I = T S e N I S P N B P S M S A VN M L )

|
T

Marking |Number | Marking | Number
on Chip of on Chip of

X Chips X Chips
—1 3 40 o7 20
-1 2 39 o8 19
—11 38 09 18
-1 0 3 10 17
—0 9 36 11 16
-0 8 3 12 15
-o07 i+ L3 4
—0 h 33 14 13
-0 g 32 15 12
—0 4 31 16 11
—0 3 30 17 10
—0 2 29 (] 9
—0 1 28 19 8

oo 27 20 7

o1 20 21 6

o2 25 21 5

©3 24 23 +

o4 23 24 3

o 22 25 2

ob 21 20 1
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limits for averages of samples of four or more upon the basis
of normal law theory.

5. Standard Deviation—Normal Universe

The distribution function of the standard deviation has
been studied by ‘““Student,”! Pearson,? and Fisher.* They
have shown that the distribution function of the observed
standard deviation ¢ for samples of size # may be expressed in
terms of the standard deviation o of the universe in the fol-
lowing way:

n- 2 na?

n 2 a e

n-3 " &r:‘—‘l ¢ 2ot dﬂ'. (64)
Qﬁxﬁgﬁ

We note at once that the distribution of ¢ is asymmetric,
although it approaches symmetry as the size # of the sample
increases. Although we have the distribution function in this
case, we do not have a table of its integral as we have for the
normal law. Obviously, however, (64) is unimodal; and it
may be easily shown that the modal value & and the expected
value @ are given respectively by

dy =

- n—2
0=J;~V=n% (65)

H
and

n—2 '
F= \/;%c = 0. (66)
Sl

We shall have many occasions to make use of the factors ¢;
and ¢z occurring in these two equations. Hence they are

Y Biometrika, Vol. VI, 1908, pp. 1-25; Vol. X1, 1917, pp. 416-417; Metron, Vol. V,
No. 3, 1925, pp. 18-21.

2 Biometrska, Vol. X, 1915, pp. §22-529.

31bid., pp. 507-521; Proc. Cambridge Phil. Soc., Vol. XXI, 1923, pp. 655-658;
Metron, Vol. V, No. 3, 1925, pp. 3-17 and 22-32.
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tabulated in Table 29 for sample sizes most likely to be of

interest.
TaBLe 29.—CorRECIION FACTORS ¢; AND 2

n €1 2 n 1 C2

3 o §773% o 72360 22 0 95346 0 96545
4 0 70711 © 79788 23 0 95553 0 96697
5 o 77460 o 83069 24 © 95743 o 96837
6 o 816%0 o 86863 25 0 95917 0 g6gbs
7 o 84515 o 88820 30 o 96609 0 97478
8 o 86603 0 90270 35 o g7101 0 97839
9 o 88192 o 91388 40 0 97408 o g8111
10 © 89443 0 92275 45 © 97753 0 98322
11 0 90443 0 9299h 50 o 97980 o 98491
12 o 91287 0 93594 55 o 8165 0 98629
13 o 91987 0 94098 6o o0 98319 0 98744
14 o 92482 0 94629 63 o 98450 0 8841
15 0 93094 0 9401 70 0 8561 0 98924
16 0 93541 0 9§228 75 o 8648 o 98gqb
17 0 93934 O 9851l 8o 0 98742 0 99059
18 0 94281 0 95768 8¢ o 8817 0 99113
19 0 94591 0 94991 G0 o 8883 0 99164
20 0 94868 0 9bh1g4 95 0 8942 0 99208
21 0 95119 o gb378 100 o 9899g 0 99248

For sample sizes greater than five, the difference between
modal and expected values of standard deviation is so small
that in most practical problems we may assume that the
Camp-Meidell inequality applics, where the standard deviation

of the distribution of ¢ is taken to be V'

7
Here again it is not feasible to duplicate theoretical con-
ditions in practice. It is therefore interesting to see how
closely the 1,000 standard deviations in samples of four drawn
from the experimentally normal distribution previously de-
scribed can be approximated by (64). The results of 'such
a comparison are shown in Fig. 60. The closeness of fit between
the observed and theoretical distributions certainly appears
to warrant our acceptance of the theory as a guide to practice
in such a case. It is also of interest to note how closely the
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Fic. 60.—DisrriBuTION oF S1ANDARD DEVIATIONS IN SampLEs oF Four Drawn
FrROM Normal UNIVERSE

theorctical and observed values of modal and average standard
deviation agree as indicated in Table 30.
TasLr 30.—AGREEMENT oF Turorrircar AND ORsErVED VALUES oF MoDAL AND

AVERAGE VALUFS oF Stanparp Drviarion

Observed in

Theoretical 1,000 Samples
of Four
Modal Standard Dewviation 1n Samples of Four 0 7071 o 7168
Expected or Average Standard Deviation in Samples
of Four o 7979 o 8007

6. Standard Deviation—Non-Normal Universc

Theoretically, we know nothing "about the distribution
function of the standard deviation of samples from a non-normal
universe—not even the values of the moments. If, then, we
are to be able to establish ranges of variability within which
the observed values of standard deviation may be expecied to
fall for samples drawn from other than a normal universe, we
must rely at the present timeupon empirically determined results.
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To indicate the nature of the results to be expected, it is
of interest therefore to consider the observed distributions of
standard deviations of samples of four drawn from rectangular
and right triangular universes. These are shown in Fig. 61.
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Fic. 61.—DistriBuTiONs OF Sranparp Deviartons or SamprLes oF Four Draww
rrRoM RECTANGULAR AND Richr TRIaANGULAR UNIVERSES.

As is to be expected, the modal and average values of the
observed distributions are less than the standard deviations
of the respective universes, Table 31. These results show
that since the modal and expected values are approximately
equal, it would be possible to apply the Camp-Meidell in-
equality except for the fact that the standard deviation is
not known. In other words, we are not in a place to set
sampling limits on the standard deviation of samples drawn
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TaBLE 31.—Expecrep anp MopaL VALuEs oF StaNparD DEviaTion

Rectangular ~ Right Triangular

Universe Universe
Modal Standard Dewviation in Sumples of Four. 1 4639 o 7761
Average Standard Deviation in Samples of [our. T 4325 o 7865
Standard Deviation of Universe 1 7607 0 9539

from other than a normal universe, unless the divergence
from normality is so small as to warrant our belief that the
distribution function (64) is a reasonable approximation.
In cases where this assumption is not justified, we may make
use of the square of the standard deviation or the variance
as it 1s termed.

7. Variance

For variance, as for standard deviation, we know the
distribution function when sampling from a normal universe.
It is

n=d _me?

dv = C(e®) 2 ¢ 29%4(q%), 67)
where C is a constant. In fact, “Student” first found this
distribution function empirically, and from it derived the
distribution of .

When the sampled universe is not normal, we know merely
the moments of ¢* expressed in terms of those of the universe.?
The expected variance and the standard deviation of variance
are

- n -1

o = o
" .

and (68)

\/” = [(r - DB = 1+ 3)]
N

qQ
I

o
n
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in terms of the standard deviation o and the flatness B2 of
the universe. Obviously, without further investigation based
upon the use of higher moments of the distribution function of
variance than those given in (68), we cannot establish sampling
limits in general with an assurance much greater than that
afforded by the application of the Tchebycheff relationship.

o

]

8. Ratio z = — Normal Universe

g

Thus far we have considered the distribution functions of
some of the simple statistics taken one at a time. We shall
find that another very helpful way of looking at this problem
is to consider the ratio z of the deviation in the average to
the standard deviation of the sample. “Student”® was the
first to derive the distribution of z for samples drawn from a
normal universe. His results are given by (69):

o

dy = - (1422 24 (69)

= _\/-,,-(”— }>!

~

It is useful to know that the standard deviation o; is always

equal to T/—I—’; . The distribution of z is symmetrical about
H—

the expected value Z = o, and the table of the integral of this

function originally given by “Student” has now been extended

by “Student”! and Fisher.!

Fig. 62 shows how the distribution function of z differs from
the normal law for the case # = 4. The broken curve is the
normal law with the same standard deviation as the observed
distribution of z derived from the thousand samples of four
drawn from a normal universe. Two things should be noted.
First, although the two distribution functions are symmetrical,
they differ widely for small sample sizes. Second, we should

I Loc. cit.
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note how closely “Student’s” theoretical distribution fits the
observed points in Fig. 62.

If the samples are drawn from other than a normal universe,
very little of importance in the theory of control is known
about the distribution of z other than that derived from an

a00r . OBSERVED DISTRIBUTION
*STUDENT'S” DISTRIBUTION
——— NORMAL DISTRIBUTION

350

g

n
'3
o
v

NUMBER OF OBSERVATIONS
- n
3 8
L] Ll

<]
o
T

-3.0 -2.4 -18 ~-L2 -06 o 06 1.2 1.8 24 3.0

I'16. 62.—ComparisoN OF “STUDENT’s” DisTrRIBUNION WITH 1HE NormaL Law
AND WITH THE OBSERVED VALUES OF % FOR SAMPLEQ OF I“()UR.

empirical study of the sampling results given in Appendix II.
The success of “Student’s” theory in predicting the distribution
of z for samples of size four drawn from rectangular and right
triangular universes is indicated mn Fig. 63 There can be
little doubt that “Student’s” distribution is a closer approx-
imation to the observed distribution than is the normal law.
Analysis of these results indicates that for most ranges — z
to + 2z (when z < 3) the associated probability given by
“Student’s” distribution must be considered as an upper bound!
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when sampling from a universe with values of Bi and B:
lying in the BiB: plane above the line

Bz —p1—3=o0.

9. Distribution of Average and Standard Deviation

We shall now briefly outline another way in which sampling
limits may be set on statistics. Instead of considering the
distribution of each statistic separately, we may consider the
distribution of pairs of simultaneously observed values of two
statistics. As an example, Fig. 64 shows such distributions
for averages and standard deviations of the samples from the
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/ ’
L) @r)
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y |
'
-4.0 !
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PROBABILITY ASSOCIATED WITH RANGE (-00 TO 2)

F16. 63.—ProBaBILITY ASSOCIATED WITH RANGE (— % TO 2).

normal, rectangular, and right triangular universes. It is
apparent that the distributions for the rectangular and right
triangular universes differ materially from that of the thousand
samples drawn from the normal universe. For control purposes
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we may make use of the form of presentation given in Fig. 65
showing the curves of regression of average on standard
deviation. For the samples drawn from a normal universe,
we see that the regression curve is a horizontal line. In the
other cases, however, the regression is non-linear. For the
rectangular universe the curve of regression is a parabola
symmetrical about the ordinate through the mean of the dis-
tribution; for the right triangular universe the curve of re-
gression cannot be so simply described.

Recent work of Neyman ! glves the equation of the curve
of regression of the average on variance in terms of the moments
of the universe. Neyman also gives the standard deviation of
the distribution from this curve of regression.

These results of Neyman were used in constructing the
theoretical curve of regression and the dotted limits corre-
sponding to three times the standard deviation of the dis-
tribution about the line of regression for the data presented
in Fig. 65. Of course we are not justified in using Neyman’s
work in this particular way, except to get an approximation.
Therefore, it is interesting to note that the results so established
include approximately g9 per cent of the observed values
as they should if the distribution about the curve of regression
were normal and the theoretical valuc of the standard deviation
used in constructing the limits were not subject to compu-
tational error.

So far as we are concerned at the present moment, emphasis
is to be laid upon the importance of these results as indicating
the wide variety of possible ways in which we may establish
limits within which observed statistics may be expected to fall.
In such a case the theoretical determination of the regression
curve together with the standard deviation of an array about
such a curve gives us a basis for establishing limits which
we may interpret at least upon the basis of Tchebycheff’s
relationship. A review of the theoretical work that has already
been done in this connection, however, indicates certain
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inherent difficulties in attaining a high degree of precision in
the derivation of the necessary regression curve and the
standard deviation from such a curve.

10. 4 Word of Caution

Before passing on to a consideration of the distribution
functions of other statistics, it is well to sound a further word
of caution about accepting theoretical results in the form of
distribution functions of statistics derived upon assumptions
of continuity of universe where for one reason or another the
measurements cannot be made under the ideal conditions
assumed. As an illustration, it is interesting to examine the
effect of grouping in any universe, such for example as the
rectangular one, upon the regression of the variance on the
average in small samples. We find that the apparent close-
ness of fit of a second order parabola to the means of variances
depends upon the number of cells.  The approximation in many
cases is not very good as is illustrated by Fig. 66 corresponding
to the scatter diagram of the 256 pairs of values of variance and
standard deviation based upon the data of Table 25. Obvi-
ously the mean values of variance corresponding to a given
average and represented by the solid dots do not lie on a second
order parabola. It follows that the precision of the estimate
of the number of points to be expected outside the limits
derived after the manner of those shown in Fig. 65 1s quite
uncertain. In fact, we cannot use Tchebycheff’s theorem in
connection with the parabola of regression to estimate even
the upper bound to this number.

The reader may appreciate now the significance of the
cxperimental results previously cited to show that the effect of
grouping into a finite number of cells and the effect of the
finite range of the experimental universe were not sufficient to
invalidate the application of the distribution functions for
averages, standard deviations, and ratios of deviations in
averages to observed standard deviations derived upon the
assumption of a continuous universe of infinite range. As a
result of these considerations, we see that in the derivation of a
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distribution function for a given statistic in a sample of size
drawn from a given universe, we must realize that in practice we

can never attain the condition of continuous universe.

2.4 L
2.2 °
: ® MEAN VARIANCE FOR A GIVEN AVERAGE
© MEAN AVERAGE FOR A GIVEN VARIANCE
2.0}
el
o
el
o
(]
v 14}
v}
z ., °
< -
z . ° .
>
1.of . ° °
ar Y ° [}
o
Y3
-]
° ®
A =
o
2} . ° °
al - 2 - 1 —
v ] 2 3 4
AVERAGE X

F16. 66.—ScATTER DIAGRAM FOR AVERAGES AND VARIANCES OF ALL PP0sSIBLE
SampLES oF Four FroM UNIVERSE 1, 2, 3, 4.

Of course, it must be kept in mind that so far as theory is
concerned, it is quite pOSSlble that the curve of regression even
for a continuous universe is not rigorously a second order parab-
ola. In other words, the theory involved above rests upon
the assumption that a second order parabola is simply a good
first approximation to the actual curve. This fact, however,
does not invalidate the argument of the previous paragraphs
to the effect that the form of the best fitted curve of regression
depends to a certain extent at least upon the number of cells
into which the universe is divided.
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11. Skewness k and Flatness B

Very little is known about the characteristics of the dis-
tribution function of either £ or B: except for large samples
drawn from a normal universe under which conditions these
distribution functions approach normality. It has long been
known, however, that the standard deviations of these two
statistics in samples of # drawn from a normal universe are

o) = \é (70)

Uﬁz = - (7 1 )

and

If the sample size 7 is of the order of magnitude of 500 or
more, we may assume that the distribution functions of these
statistics about k and B: respectively of the universe are such
that the normal law integral may be assumed to give approx-
imate values for the probabilities associated with symmetrical
ranges about the expected values.!

12. Other Measures of Central Tendency

In our discussion of quality control methods, we shall
have occasion to use two measures of central tendency other
than the arithmetic mean. These are the median and the

Max. + Min.

"

samples of # drawn from a normal universe is known to
approach normality as the sample size becomes indefinitely
large. Little is known, however, about the distribution of
medians in samples drawn from other than a normal universe
or in small samples drawn from any universe. Also the dis-

. The distribution function for the median of

! Isserlis, L., “On the Conditions under which the ‘Probable Errors’ of Frequency
Distributions have a Real Significance,” Proceedings of the Royal Society, Series A,
Vol. XCII, 1915, pp. 23—41.



198 ECONOMIC CONTROL OF QUALITY

tribution function of the ME— 1s apparently not known
except for samples of #» drawn from a rectangular universe.!
For both these measures of central tendency, we can say
that their distribution functions for symmetrical universes
are symmetrical so that the expected value for both distribution
functions is the average X of the universe. Although, in
general, we do not know the standard deviation of either
measurement for small samples from even a normal universe, we
do know that the standard deviation of the median in large

1.2¢30 .
3-, where o is the

263
Vi

samples from a normal universe is
standard deviation of the universe.
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ofF Size Four DrawN rrom A NormaL UN1VERSE.

Wherever it has been found necessary to make use of the
distribution functions of these two measures for small samples,
they have been determined empirically. For example, Fig. 67
shows the experimentally determined distributions of these
two measures for the 1,000 samples of four from the normal
universe previously mentioned. For purposes of comparison
we have included the theoretical and observed distributions of

! Rider, P. R., “On the Distribution of the Ratio of Mean to Standard Deviation
in Smaull Samples from Non-Normal Universes,” Biometrika, Vol. XXI, pp. 124-141,
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arithmetic means of these samples. We see that all of these
are approximately normal. Obviously they would be identical
one with another for samples of size two. The observed standard
deviations shown in Table 32 are, however, significantly dif-

TABLE 32.—CHARACTERIsTICS OF DIsTRIBUTIONS OF THREE MEASURES OF
CrNiraL TENDENCY

Efficiency as Compared
to that of Mean as
100 Per Cent
Measure of Standard
Central Average | Devia- |Skewness| Flatness
. . ) tion ke B2 Observed |Theoretical
Tendency 0 '
a0 for Sumples| for Large
of 4 Samples
Anthmetic Mean | o o1 0 o2 0 038 2 98 100 0 1m0
4 L 3 935
Mcdian. 0 026 O 55y | —o o028 | 2921 80 6 63 8
Max. + Min.
- o 036 O 547 —0 01§ 2 986 84 2
2 S
|

ferent one from another, indicating that the measures differ in
efficiency as defined in Paragraph 6 of the previous chapter.'
. .. Max. + Min.
The theoretical efficiency for the measure ————————— even
h
for large samples is not known, although it is known that it will
be less than that of the median. The interesting thing to note
is that the efficiency of a measure depends upon the sample
size. IFor example, that of the median starts with 100 per cent
for sample size 2 = 2 and drops off to 63.8 per cent for large

samples.

13. Other Measures of Dispersion

One of the competing measures of dispersion, particularly
in engincering work, is the mean deviation. In gencral our
state of knowledge in respect to the theoretical distribution

1See discussion in Chapter XIX of Part VT for special interpretation of efficiency
for the case of small samples. Just as in Paragraph 6 of the previous chapter, effi-
ciency here applies to the estimate of the mean X of the universe obtained from the

Muax. + Min.

mean of m medians or values of in samples of four.
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of the mean deviation even for samples from the normal
universe is in a far less satisfactory state than is that of the
standard deviation under similar conditions. For large samples
it is true that the distribution function of the mean deviation is
sufficiently near normal for us to use the normal integral
in establishing sampling limits in control theory. Under these
conditions, however, the efficiency of the mean deviation is
only about 88 per cent.
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Fi1c. 68.—EmriricaLty DreiermiNgp DisirisriioN oF Roor MEAN SOUARE AND
MEeaN Deviarions IN SampLis oF Four.

The empirically determined distribution of the thousand
mean deviations (multiplied by +/7/2) in samples of four is
presented in Fig. 68. We see that it is distinctly different
in functional form from that of either the theoretical or the
observed distribution of standard deviations of this same
group of 1,000 samples of four. We also see from Fig. 68 and
Table 33 that the mean and modal values of the distribution
of mean deviations differ from those of the corresponding
distribution of standard deviations. Hence, until further
theoretical work has been done, the use of the mean deviation
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for small samples offers comparatively serious limitations as
compared with the use of the standard deviation. Furthermore,
we shall see that under these conditions the standard deviation
is the more efficient measure.! Hence we should not expect
to find many cases in quality control work where the mean
deviation is to be preferred to the standard deviation as a
measure of dispersion.

TaBLE 33.—CHaRrAcTERISTICS OF DisTRIBUTION 0F THREE MEASURES
ofF Disrersion

Standard
Basis of Fstimate of Average | Mode | Devia- |Skewness | Flatness
Standard Deviation o ) tion kg Bz2¢
79

Root Mean Square Deviation . | o 8007 | 0 7161 0 340 o 386 2 952
/ (Mean Deviation) o 8612 | 07353 | © 379 o 622 3 261

N — X 1 7564 | o 875 o 548 3 o30

(&)
8
s}

[s]

Sometimes we need to use a measurc of dispersion which
can be readily obtained on the job. For this purpose we may
make use of the absolute value of the range between the
maximum and minimum observed values in samples of size #.

The observed distribution of ranges in samples of four
drawn from a normal universe is given in Fig. 69. The average
of the thousand observed ranges is 2.0030c where o is the
standard deviation of the universe. Upon the basis of these

experimental results, we could take times the range as

an approximate value of the standard deviation of the universe,
or looked at in another way, knowing the standard deviation
of the normal universe, we may set limits within which the
observed range in the sample size #» may be expected to fall
with a given probability P if, as in the previous examples,
we can find the distribution function of this range.

! Chapter XIX of Part VI.
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Considerable theoretical work has been done within recent
years in an attempt to find this distribution function. For
example, Tippett! gives the expected value and standard
deviation of the distribution of ranges in samples of size #
drawn from a normal universe. From his results we get Ifig. 7o.
He also gives the theoretical values By and B2 of the distribution
of the range. In this way, he shows that the distribution of
this statistic diverges more and more from normality as the
size # of the sample is increased. Obviously, therefore, the
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best that we can hope to do in the present state of our
theoretical knowledge, in using the range for control purposes,
is to establish symmetrical limits about the expected value of
the range given in Fig. 70 for a specified sample size by making
use of theoretical standard deviations also given in this figure.
Since we do not know the distribution function, all that we
can say is that Tchebycheff’s theorem applies to the limits
thus established.

In this same connection, it is interesting to compare the

1“On the Extreme Individuals and the Range of Sumples taken from a Normal
Population,” Biometrska, Vol. XVII, pp. 364-387, December,
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observed distribution functions of estimates of the standard
deviation o of the universe derived from the root mean square
deviations, mean deviations, and ranges for the thousand
samples of size four drawn from the normal universe. These
distributions are shown in Fig. 71. The root mean square
and mean deviation estimates of the standard deviation &
are those usually employed in error theory although they are
not consistent as we shall see in Part VI. We shall have
occasion later, in discussing the efficiency of measurements,
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to emphasize the significance of the differences in these three
distributions.

Sometimes in commercial work we may have occasion to
use a range other than the extreme range because often the
available data represent the quality of product after a previous
inspection has excluded the extremes. We shall enter ‘into
this discussion only far enough to indicate the nature of the
problems involved.

At the present time we must rely almost entirely upon
the results of empirical studies to indicate the nature of the



204 ECONOMIC CONTROL OF QUALITY

distribution functions that we may expect to get under such
conditions, and also to determine how these functions depend
upon the functional form of the universe from which samples
are drawn. Fig. 72-a shows the observed distributions of
four ranges in samples of four drawn from a normal universe.
To obtain these distributions, the four values in each of the
thousand samples of four were arranged in ascending order
of magnitude. Thus, if we let X1, Xs, X, X4, represent the
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©O RANGE DIVIDED BY EXPECTED RANGE)
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o o t v
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Fie. 71.— Disrrisutions oF THrek Esimmares oF S1anparp DeviaTion of
UNIVERSE.

values in a sample thus arranged, the four ranges are: the
extreme range Xa — X, the range between the first and second
X2 — X, the range between the second and third Xy — X,
and the range between the third and fourth X; — X.

The striking thing to be observed is that the distribution
functions of the last three ranges are less symmetrical than
that of the extreme range. Furthermore, the standard de-
viation of the extreme range is larger than that of any one
of the other three distributions in absolute magnitude, although
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when expressed as a coefficient of variation, the variation in
the extreme range is less than that in any other. For purposes
of comparison, the distribution function of observed differences
between successive pairs of observed values is also reproduced
in this figure. Table 34 shows the observed expected value,
standard deviation, skewness, and flatness for these five dis-
tributions.

TasLe 34.—CuaracTERISTIC OF DisTrisurioN or RaNGEs

Stands
Average t.md.x-rd Skewness Flatness
Range Deviation &
0 7o ] Bz
A — .\, o 7863 o 6087 12133 4 5604
Ny— X, o 6338 0 4941 1 2461 4 5974
Xo— X, o 7752 0 5953 T 1672 4 3608
Ne— Ny 2 0044 o 8759 o §627 3 0312
Successive

Drawings 1 2136 o 8661 0 9140 3 5884

Turning our attention to Figs. 72-4 and 72-¢c, we see the
marked influence of the functional form of the universe upon
the distribution functions of the ranges. This is significant
in connection with our present study in that it shows that the
interpretation of control limits set upon some statistic such
as a range depends much more upon the nature of the func-
tional form of the universe than does the interpretation of
similar limits placed upon standard deviations and, particu-
larly, limits placed upon arithmetic means.

14. Chi Square -

The statistic x2 is a measure of the resultant effect of
sampling fluctuations in the cell frequencies. Thus, if the
universe of possible effects be divided into m cells such that
in a sample of size # the expected frequencies in these cells are
respectively yi, y2, ..., ¥i, ..., Ym; and if the observed
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frequencies for a given sample in these same cells are yi, ya,
ey Yiy e ym, X% is defined by the relationship
m o, N2
9 _ ¥ (}’z - Yz)
Yt 2o

i=1 y:

X

In 1900, Pearson ! gave the distribution function of the statistic
x2. which may be written

x* m—73

feo(x? m) = Ce 2(x?) * d(x?), (72)

where C is a constant.
Similarly it may be shown that the expected value x2, the

1000 e 1000 — =i
> ot L1 A > 174 ,-'r/
900 Frt o 900 0
2 /' / /, z 4 /(
i 800 # 7 & soo AL
9 700 L1 / 9 100 ,.',' :
« /s3] A NORMAL 4 7l
“ Py w 60 M
w 600 Ty UNIVERSE [ | o 600 UK /
> 500 > 500
K F AV K [
< 400 - < 400 2
5 ; 5 /| RiGHT TRIANGULAR
300 300 144
2 i A 2 )/ / UNIVERSE
O 200 / o 200 /',’
100 fg- 100 ¢
o o
0 05 1.0 1.5 20 25 30 35 40 45 50 55
DIFFERENCES IN TERMS OF O
1000 /
-
;, 900 f— -
u 800 -
o Vi .
4 700 7 ----- DIFFERENCE X2 - X|
‘- 600 17 ——— DIFFERENCE X3 — X2
¥ soo0 REL(J:!IIAVNEGRUSLEAR — — -— DIFFERENCE X4 — X3
'5 400 L7 / DIFFERENCE X4 — X,
2 300 i / / —-—— SUCCESSIVE DIFFERENCES
3
5 /
O 200+
100 » .

[
O Q5 10 15 20 2530 3540 45 50 55 ¢
DIFFERENCES IN TERMS OF O
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UNIVERSE.

' Karl Pearson “On the Criterion that a Given System of Deviations from the
Probable in the Case of a Correlated System of Variables 1s such that it can be Reason-
ably Supposed to have Arsen from Random Sampling,” Philosophical Magazine,
sth Series, Vol. L, 1900, page 157. .
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modal value X2, and the standard deviation o,: of x2 are
given by

E=m-1
)\é — -3 (73)
0= Va(m—1). (74)

Tables of values of the integral of the x?* function for the
range of values of number m of cells of most importance were
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originally given by FElderton and are reproduced in useful
form in Pearson’s Tables.!

Tables in slightly different form are given by Fisher.?
Making use of these tables, we can read off the probability P
associated with almost any pair of limits in which we may
happen to be interested. Fig. 73 indicates the way in which
the probability associated with a given value of x> varies
with the number of degrees of freedom.?

\ Tables for Statisticians and Brometricians, Table XI1.

2 Statistical Methuds for Research Workers.

3 The number of degrees of freedom is equal to one less than the number of cells if,
as we have assumed above, the universe frequencies arc known a priors.
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The distribution function of x? is unimodal; and since
the mean and the mode differ by only two, the Camp-Meidell
inequality applies quite accurately to symmetrical ranges
about the expected value. TFurthermore, it is of interest to
note that, for a comparatively large number m of cells, the

olip %2 DISTRIBUTION m =30

a
SECOND APPROXIMATION

0,10 | DISTRIBUTION
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o002t
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I16. 74.—DisirIBU11oN oF x? For m = 30.

1 L 1 ! 1 1
32 36 40 44 48 52 56 60

distribution of x* can be quite accurately obtained by the
second approximation function (23). For example, Fig. 74
shows the second approximation fitted to the theoretical dis-
tribution of x* for m = 30 cells. Hence, for a number of
cells of the order of magnitude of thirty or more, the normal
probability function can be used to give a close approximation
to the probability associated with a symmetric range about
the expected value.

It is of interest to note that the distribution of x2 is not
explicitly limited by the functional form f of the universe
or by the number # in a sample. A limitation, however,
does enter in that the functional form of the distribution
depends upon the assumption that the variable x; is distributed
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normally, where xi = y; — yi. From our study of the point
binomial distribution function, we see that this assumption
requires that the probability p; associated with the ith cell
must be such that the probability distribution (gi + pi)™ is
approximately normal. This condition cannot be rigorously
fulfilled, nor do we have any available analytical method
for determining its significance. We may, however, again
make use of the experimental results presented in Appendix I1,
this time to give information of an empirical nature which
indicates the magnitude of the effect of grouping upon the
distribution of x%. We shall make use here of only the four
samples of one thousand drawings each from the normal
universe.

TanLe 35.—CarLcurarions INVOLVED IN DETERMINING X2

True Observed (v —y)?
Distribution Distribution y—y (v —y)? —_—
y Yy y
3 S 2 4 1333
9 9 o o 0 000
28 36 8 64 2 286
65 73 10 100 1 538
121 123 2 4 0 033
174 165 9 81 o 466
198 203 5 2 o 126
174 172 2 4 © 033
121 123 2 4 o 033
65 08 3 9 o 138
28 31 3 9 CEREY
9 8 1 1 o 111
3 2 1 I o 333
xt =06 741
P =o0 873

For purposes of reference, Table 35 shows the calculations
involved in determining the value of x? for the first sample
of one thousand, grouped into thirteen cells. We see that
the probability p associated with the end cells is only gis,
which is exceedingly small. We may, therefore, consider the
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advisability of grouping the tails of the distribution after the
manner often suggested in the literature. Table 36 shows the
effect of grouping the tails of each of the four experimental
distributions. In all but one case the observed value of
x? is less than the theoretical expected value, although the
average difference between the two decreases as we increase
the probability associated with the last cell by decreasing
the number m of cells. These experimental results indicate
that the effect of the limitation as to the normality of the
distribution of the variable x» may be much more serious from
an experimental viewpoint than one might be led to believe
by reading the literature on the subject. In any case the use
of x2 in control work must be subjected to careful scrutiny
to eliminate the obvious effects of grouping even under con-
ditions where, as in the present case, we should expect the x*
test to be applicable.

15. Summary

Broadly speaking, distribution functions of statistics are
basic tools with which the engineer interested in quality control
must work. In this chapter we have sketched briefly the
present state of our knowledge of the distribution functions
of some of the more important statistics. A summary of
these results is given in Table 37. From this we see how
little is really known about the distribution functions of even
the simple statistics, particularly when the universe is not
normal, with the two exceptions, viz., the fraction defective p
and the average X.

Subject to limitations set forth in this chapter, we can
make use of the average and standard deviation of a statistic,
even when the distribution function is not known. When
theoretical information about the distribution of a statistic is
not available either in the form of the function or certdin
moments of the function, and we have reason to believe that
the universe is not normal, we may make use of the empirical
laws presented herein to indicate the extent to which the
normal law theory may be applied. We see that there is much
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room for future development in distribution theory, all of
which will have a direct bearing on the theory of control.
However, we shall soon see that in many cases the gain in
precision through possible developments of this nature may
not be of so great practical importance as might at first be
expected.



CHAPTER XV

SAMPLING FLUCTUATIONS IN SIMPLE STATISTICS—
CorRRELATION COEFFICIENT

1. Correlation Coefficient

Having considered in the previous chapter the distribution
functions for statistics of a single variable, we now turn our
attention to the distribution function of simultaneously
observed quality characteristics correlated one with another.
Since, as is to be expected, the problem of deriving the distri-
bution functions for correlation statistics is in general much
more difficult than those previously considered, we shall
confine our attention to the use of the correlation coefficient
as a measure of relationship. In Part 11 we saw how this
simple function may be used to present the information con-
tained in a single set of » data. There, however, we did not
consider how much an obscrved value of 7 tells us about what
we may expect to get in the futurc under the same essential
conditions or, in other words, under the same constant system
of chance causes. What was said there about the correlation
coefficient as an expression of observed relationship is true
for a given sample. Naturally, howcver, even under con-
trolled conditions this statistic is subject, as are those previously
studied, to sampling fluctuations.

As an illustration Fig. 75 shows the observed scatter dia-
grams and corresponding values of correlation coefficient for
eight samples of five simultaneous pairs of values produced
by the same constant system of causes wherein there was no
correlation or commonness of causation between the two
variables. In other words, the correlation r in the universe
was zero; yet we find in one sample an observed correlation

of — 0.82.
214
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The method of obtaining these eight samples was as follows:
Eighty consecutive values were taken from Table A, Appendix
II, and these were grouped into forty pairs by taking the
first and second, the third and fourth, and so on. The first
five pairs were taken as the first sample, the second five pairs
as the second sample; and in this way eight samples of five
pairs each were obtained from a non-correlated universe.
The result of this experiment is sufficient to show the impor-
tance of knowing the distribution function of the correlation
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F1a. 75.—Fieur Scarrer DiaGrams REPRESENTING SampLING FructvaTions oF
1HE OBsERVED CORRELAIION IN SAMPLES OF FIVE DrawN rrom 4 UNivekse
IN WHICH THERE WAS NO CORRELAIION.

coefficient as a basis for interpreting the significance of an
observed value of the correlation cocfficient 7 in a sample.

As might be expected, the distribution function of the
observed correlation 7 in samples of # drawn from a universe
in which the correlation is r involves both r and the sample
size n. Table 38 presents experimental evidence. Thus
Column 2 of this table shows the observed distribution of
correlation coefficient 7 in one hundred samples of four drawn
from a universe in which the correlation r was o. It will
be seen that the mean value r is 0.0300 and that the standard
deviation or is 0.§620. The distribution itself is approximately
rectangular. In a similar way, Column 4 shows the observed
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distribution of r for one hundred and twenty-five samples
drawn from a universe in which r was o0.5. The differences
between columns 2, 4, and 6 are attributable to the fact that
r is not the same in the three cases. Columns 8, 10, 12, and
14 give the distributions of observed values of the correlation
coefficient in samples of twenty-five for different values of r.
A comparison of these results with those in the other part of
the table indicates the influence of the size of sample.

2. Distribution Function of Correlation Coefficient

From experimentai results, “Student”! derived in 1908
an empirical distribution function of correlation coefficient r
in samples of » drawn from a normal universe in which r = o.
In 1913 Soper? obtained the mean and the standard deviation
of the distribution of correlation coefficient to second approx-
imations for samples of # drawn from a normal universe with
correlation coefficient 1. In 1915 R. A. Fisher?® showed that
the distribution function of 7 is

n—1
(1—12) 2 n_4 gt <cns (= 1)

T a -3 (r—rf dirr)" "2\ V1 — r2p?

>- (7%)

This function 1s so complicated as to require a table of values
giving the distributions for different values of universe cor-
relation 1 and sample size #». Such tables were provided in
1917 by Sopert and others, and the reader is referred to
these for a comprehensive and detailed picture of the dis-
tribution of the correlation coefficient. Tt will be of interest,
however, to note the way it varies with the size of sample and
the correlation in the universe as shown in Fig. 76.

1“On the Probable Error of a Correlation Coefhicient,” Brometrika, Vol. VI, p. 302
et se N

’(‘]'On the Probable Error of the Correlation Coeficient to a Second Apprmu-
mation,” Biometrika, Vol. 1X, 1913, page g1, et seq.

® “Frequency Dntnbunon of the Values of the Correlation Coefficient in Samples
from an Indefinitely Large Population,” Biometrika, Vol. X, 1915, page 507, et seq.

4 H. E. Soper, A. W. Young, B. M. Cave, A. Lee, K. Pearson, “On the Distribution
of the Correlation Coefficient in Small Samples,” Biometrika, Vol. X1, 1917, pp. 328-

413.
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r=o r =05 r=o09
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1 1 1 1 -l
-1.0 0 1.0 -1.0 o 1.0 -1.0 ]

0

SAMPLE SIZE n =10

-1.0 o 1.0 -1.0 0 1.0 -1.0 (] 1.0
SAMPLE SIZE n=25

F1e. 76.—Tvricar Disirisurions or Correration CorrrICIENT,

3. Standard Deviation or of Correlation Cocfficient

The article by Soper and others shows that the standard
deviation @r of the correlation coefficient in samples of # is
given approximately by the simple formula

1 -—r°

Oy = ————.,
RV

(76)
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The degree of approximation is indicated by the curves in
Fig. 77.

In gencral, it will be seen that, except when the sample
size # 1s small and the universe correlation r is large, formula
(76) gives a two-place accuracy. [For greater precision the
reader must refer to the tables.
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4. Modal and Expected alues of Correlation Cocfficient

Except for the case of samples from a normal universe
with correlation coefficient r = o, the modal value ¥ and the
expected or mean value T of correlation coefficient do not
coincide with the universe value r. Fig. 78 shows the rela-
tionship between these three values for several sample sizes.
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We see that for samples of less than twenty-five the absolute
differences | r — ¥| and |r — T | are quite large. Even for
n = 25, we often have occasion to make corrections for the
fact that these two differences are not zero.
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F1c. 78.—RELar1oNsHIP oF MobaL VALuE r AND Expeciep VALUE 1 IN SAMPLES OF
Size # rrom A Normar Universe with Correra11oN COEFFICIENI T,

5. Transformed Distribution of Correlation Cocfficient

Let us consider the problem of establishing sampling
limits on the observed value of correlation coefficient in samples
of # drawn from a normally correlated universe for which the
correlation coefficient is 1. The tables of T and o7 previously
referred to, make it possible to write down limits

; =+ {07,
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and applying Tchebycheff’s inequality, we can say that the
probability of observing a value of r within these limits is

T .. A
greater than 1 — = Since, as is illustrated in Fig. 76, the

shape of the distribution function changes so much with size
of sample and the correlation of the universe, the actual
probability associated with such a pair of limits will vary
materially for different sample sizes and different values of r.

Under these conditions, some of the recent work of Fisher!
can be used to good advantage. He has shown that the dis-
tribution of z where

z = Mloge (1 +7) = loge (1 = 7)] (77

is approximately normal independent of the sample size and the
corrclation coefficient r in the normally correlated universe.
Furthermore, he has shown that
1
O, =~ ——» (78)
N =3
where o, is the standard deviation of the distribution of the
transformed variable z.
Fisher has also shown that the expected value Z is greater

T )
where z 1s the value

numerically than z by an amount —( ;
. 2 — 4

of z given by (77) forr = 1.

Making use of these results we can establish sampling
limits Z = fo such that to a high degree of approximation the
probability that an observed value of z in samples of size #
drawn from a normally correlated universe with correlation
coefficient T will fall within the range fixed by these limits is
given by the normal law integral.

6. Conditions under which Distribution of r has § igniﬁmn'ce

What has been said about the sampling fluctuations of r
has significance only when all samples are drawn from the
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same constant system of chance causes, so that the probability
p that the point (X, Y), corresponding to an observed pair of
values of X and Y, will fall within a given area X to X + 4X
and Y to Y + dY is constant for each observed pair of values.

Correlation between variables coming from non-constant
cause systems is termed spurious correlation. A correlation
coefficient calculated from # observed pairs of values arising
from a non-constant system of chance causes is a spurious cor-
relation coefficient for which the sampling distribution function
(75) does not apply Such a coefficient is not subject to the
usual in rerpretatlon as a measure of relationship discussed more
in detail in the following section. Tf then we do not take great
care to eliminate lack of constancy in the cause system giving
rise to a set of » pairs of values of two variables, we may obtain
a false conception of the relationship between these variables.
This is very important as we shall now show by a simple
illustration.

Let us assume that we arc using Rockwell hardness Y as a
measure of tensile strength X" for nickel silver sheet and that
for this kind of material of given thickness the relationship is
statistical in that the probability of an observed pair of values
(X, Y) falling within the rectangle X to .Y + 4X and Y to
Y + dY is constant. It can easily be shown under these
conditions that the correlation cocfficicnt R between X and Y
for two universes considercd as one, or for the total number
of observations is

ab
10,0y + 4
— (79)

) N e
(ax- + )( oyt )
VT

where the difference between expected values of tensile strength
and that between expected values of Rockwell hardness are
a and b respectively.

This equation shows that, under these assumptions, the
spurious correlation R may be either greater or less than r.
Fig. 79 gives a simple illustration. The two sets of dots rep-

R=
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resent two sets of 12 observed pairs of values of tensile strength
and hardness for nickel silver sheets of two thicknesses. The
observed correlations of the two groups taken separately are
r1 = 0.59 and 72 = 0.54; considered together the correlation R
is 0.90. Lines of regression (1, 2, and 3) of hardness on tensile
strength are shown for correlations 7y, 72, and R respectively.
Obviously R is a spurious coefficient. To use it as an indication
of the statistical relationship between hardness and tensile

I'OD[-

TENSILE STRENGTH -1000 POUNDS PER SQUARE

oL 1 ! 1 1 L )
0 50 60 70 80 90 100
ROCKWELL HARDNESS B

16, 79.—~FErrecr or Seurious CorrELATION.

strength would obviously be misleading. Furthermore, as
already stated, the distribution function (75) does not apply
to this case.

7. Commonness of Causation Measured by r

Let us assume that we have any two physical quantities X
and X3, and that variations in the first are produced by (/ + )
independent causes, which we shall designate by

Ul,UQ,...,Ul,l/l,V2,---;V8,
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whereas variations in the second are produced by (/ + m) inde-
pendent causes
U], U:z, ey Ul, [’V], Wz, c ey Wm,

so that / of the causes are common to the two variables.
et us consider first the following simple hypotheses con-
cerning the causes:

(1) Each cause produces a single effect, and this effect is
unity for all of the causes.

(2) The probability that any one of the causes produces its
effect i1s constant and equal to p.

(3) The resultant effect X or X is made up of the sum of
the effects of the individual causes.

These conditions, of course, lead to a binomial distribution
of effects for each of the variables X'} and .\%.

Denote by z the contribution to .X'; and A’ of the / common
causes, by x the contribution of the /s, and by y that of the
W’s. Then, for any particular operation of the cause systems,

X =x+4z2
and
No = v + o

It may ecasily be shown that under these conditions

/

e 8
\/(/ )+ m) (80)

r.\'l.\'z =
If s = m so that thecre are the samc number (/ 4+ m) of
causes for each of the variables X} and X3, then

d (1)
Ir = ‘—’ 1
[+ m
or the ratio of the number of common causes to the total number
of causes in either variable.
Let us consider now the more general casc in which X; and
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X are related to their respective causes by some unknown
functional relationship. Thus
X = Fl(Uh Uz, ey Ul, Vl, Voy ooy Vs),

and
_Xz = Fz(Ul, Uz, ey Ul, W],Wz, oo ay Wm)

Now we shall think of the U’s, /s, and /#”’s as symbols for
groups of causes, each group producing a discontinuous dis-
tribution of effects.

Assuming that X, and X can each be expanded in a Taylor’s
series, that terms beyond the first powers in the expansions
can be neglected, that equal deviations in the U’s, /s, and
I¥’s produce deviations in X and X proportional to the cor-
responding number of causes, and that the standard deviation
of effects of one of the / 4+ 5 + m causes is the same as that of
any other, it may be shown that ry y, is again given by (80).

8. Simple Example Showing How Correlation Cocfficient Meas-
ures Commonness of Causation

Let us take eight chips experimentally identical—three
red, three green, and two white. On each chip let us mark
one side with zero and the other with unity. Now let these
chips be tossed; let z be the sum of the numbers turned up
on the two white ones, and x and y be the corresponding sums
on the green and red ones, see Fig. 8o.

We may think of the turning up of a chip as a cause and the
number on a chip as the effect of the cause. If we let X, be
the sum of the numbers on the three green and two white ones,
and similarly let X: be the corresponding sum on the three
red and the same two white ones, then X; and X> may be
thought of as two variables having two out of a total of five
causes of variation common to both.

In general, the resultant effect of the first system is

’

N =x+43,
and that of the second system is
X, = y+ =z

Inasmuch as each observed value of X; and X2 has a common
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component, i.e., the effect of the two common causes, we would
naturally expect a certain relationship between the values of
X1 and X in successive operations of the two systems.

Now the correlation coefficient ry y, between X and X3 is
a measure of this relationship; and since these two systems
of causes obey all the Jaws laid down for the general casc in
Paragraph 7, we have merely to set / = 2, m = 3, and we have

)

- = 0.400.

Tyxy = 7 T

The observed correlation coefficient between X, and X
in one observed set of §oo pairs of values was o.422, giving a
rather close check on the expected valuc o.400.

© 00

()
o
Fia. 8o.~ Two Sysiems Having Two Cavses 1n Common,

Fig. 81 gives the scatter diagram and lincs of regression
for these soo observed values of X and X%.

Practical  Significance—In Chapter IV attention was
directed to the fact that the quality of material must be
expressed in terms of physical characteristics which are, in
general, not independent one of another because we do not
know the independent ultimate quality characteristics or
properties of a thing which make it what it 1s. In this con-
nection the importance of considering not only the quality
characteristics that are used in expressing quality but also
the relationships between these was emphasized. We are
now in a position to see more clearly the reason for so doing.
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Let us consider first the simplest kind of a case in which
we have a product with two quality characteristics, X; and
Xs. 1t is apparent that simply to specify that the two quality
characteristics should be controlled about the averages X,
and X, with standard deviations o; and o; does not place the

b )
5 ( o o 3
4+ 3 15 30 16
L
[
3k ¢ 12 4 52 3'. 4
N
x
2t ‘-———-—33 600 40 ! ]
'/
33
1+ 20 [ 20
oL : 10 1
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F1G. 81.—Scarrer DiacraM aND LINEs 0F R1L.GRESSION FOR §00 OBSERVED VALUEsS,

same requirement on the constancy of the inherent quality
of the material as to state that these two properties shall be
controlled in the way just indicated and in addition that’the
correlation between them shall be, let us say, homoscedastic
and linear with a coefficient of correlation r. In the second
form of specification in which the nature of the correlation
between the two characteristics is specified, we have intro-
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duced certain restrictions on the quality of the material in
that the two characteristics must have a common causal
source of an amount consistent with the causal interpretation
of r outlined above.

Passing to the more complicated case where the quality
of the material is specified in terms of m quality characteristics
Xy, Xoy ..., Xiy..., Xm, there is a corresponding interpre-
tation of the correlations which becomes of importance in the
consideration of ways and means of specifying the quality of
materials. It is beyond the scope of our present discussion
to do more than call attention to some of the recent develop-
ments in statistical theory indicating possible causal inter-
pretations of certain inter-relations between all the pairs of
the m variables measured in terms of the correlation coeffi-
cients. For example, it has been known for several years that
four variables may be thought of as due to one general causal
factor plus four specific non-correlated factors when

T1of34 = Igley = T4lag.

T. L. Kelley ! has recently given an interesting discussion of
the causal significance of inter-relationships of this character.
Such work suggests an avenue of approach to the difficult
problem of specifying quality in terms of those attributes
which make it what it is.

9. Interpretation of r in General

The correlation coefficient is often used as a measure of
relationship when the condition of constancy of cause system is
not satisfied. This is particularly truc of time series.  We shall
consider one simple example in safficient detail to show that
the sampling distribution for such a coefficient of correlation is
not necessarily the same as that discussed above, and that the
above interpretation of r as a measure of commonness of caus-
ation does not apply.
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For this purpose we shall use an example given by Yule ! in
his presidential address before the Royal Statistical Society in
November, 1925. The data are given in Fig. 82 and show the
apparent relationship between the number of marriages in the
Church of England and the decrease in the standard mortality
rate over the same period. In this case the observed value of
7 18 0.95.

Needless to say this value of # may be thought of, as in
Part 11, as a summary presentation of the observed pairs of
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values. For example, an assumed linc of regression would
involve the statistic 7. However, one is led to agree with Yule
that there is no causal relationship between the two quantities
shown in Iig. 82. Lven if there were, the interpretation of
as a measure of commonness of causation in the sense of the
previous two paragraphs would not hold.

1“Nonsense Correlations between Time Series,” Fournal of Royal Statistical
Society, Vol. LXXXIX, pp. 1-64.



CHAPTER XVI

SampLiNG FLucTuaTioNs IN SiMpLE STATISTICS—
GeNErAL REmARKS

1. Two Phases of Distribution Theory

Starting with the simple problem discussed in detail in
Chapter XIII of Part IV, we have noted that there are two
phases to the theory of distribution.

A. Mathematical Distribution.—Given a discrete universe,
it 1s theoretically possible to set down all of the ways in which
one may draw therefrom a sample of size # just as we did in the
case of the simple example discussed in Paragraph ¢ of Chap-
ter XIII. It is then possible to calculate any given statisdc for
any one of the N possible samples. The fundamental nature
of the problem of determining the mathematical distribution
of a given statistic may then be represented schematically as
in Table 39. The first column of this table is supposed to stand
for the NV possible different samples.  Obviously, 6, stands for
the value of the ith statistic for the jth sample, the permuted
column of values corresponding to any statistic 6; representing
the distribution of possible values of that statistic.

The problem of determining the mathematical distribution
of a given statistic 6; is that of finding the distribution cor-
responding to the N possible different samples. This part of
the work, it should be noted, is purely formal or mathematical.
From a logical viewpoint, this table has nothing to do with
the universe in which we live until we have connected it up
in some way or other with reality. This we shall now do.

B. Objective Distribution.—We may think of the equation of
control (§8) as defining the universe of possible values of X from
which we may select all possible different sets of samples of

230
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size 7 just as we have done above. Strictly speaking this is
true only when (58) is discrete. If it is continuous we can, of
course, calculate the relative frequency of occurrence of a sta-
tistic within a given interval.

TaABLE 39.—ScHEmATIC OF DISTRIBUTION OF SraTISTICS

Sample Statistic Statistic .- Statistic E Statistic
a, 0, . 0, - 0,
N Oy < O, - On1
2 O, Oy . . 0, . . Op2
s 0, 0y, .o 0, - 0,
N O\ Qv * 93 N " . AN

In a similar way, it should be possible to calculate mathe-
matically the distribution of any statistic for a sample of
given size drawn from such a universc of possible effects. Up
to this stage, the procedure is, as before, purely mathematical.
At this point we make use of the postulate of control previously
discussed in which we assume that there exist constant systems
of chance causes such that the observed distribution of effects
approaches in the statistical sense the mathematical distribution
function. It does not appear feasible to justify this assumption
other than in an empirical way as we have tried to do in Parts I
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and IlI. The comments of Dodd' again become relevant.
Whether one chooses to call a mathematical distribution a prob-
ability distribution or not would seem to be a matter of choice.
The mathematical distribution itself, as any mathematical
formula, merely becomes a tool in the hands of an experi-
mentalist.

It is essential therefore that in all that follows we carefully
keep in mind the difference between the mathematical theory of
distribution and the physical theory of distribution which it
would appear must rest upon the assumption that the law of
large numbers is a law of nature.

2. Importance of Distribution Theory

Again let us return to the simple problem discussed in
Chapter X111 of Part IV. [ think that most people would agree
that if they were to draw samples of four from an experimental
universe such as described in that chapter, they would get as
statistical limits the distributions shown in Fig. 57. T doubt,
however, that many of us would have much of an idea how the
distributions of standard deviation, mean deviation, skewness,
and flatness, would look in such a case until we had gone
through the mathematics of distribution as was done there.
This is just the kind of situation that the cngineer of control
faces when he considers the problem of predicting what he
may expect to get in the future based upon an assumed equation
of control of the type (58).

It is obvious that the reasonable way of predicting under
such conditions, assuming the existence of the law of large
numbers, is to make use of mathematical distribution theory
such as that briefly discussed in the previous chapters. Our
excursion into the field of mathematical distribution theory,
however, has been a sort of pleasure trip in which we stopped
to look at a few things which in the present state of our knowl-
edge appear to be of immediate practical interest. It is well,
therefore, that we take another look at this field for the purpose

1 Loc. cit.
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of getting a little better picture of the theory of mathematical
distribution as a useful tool.

3. Mathematical Distribution Theory—Method of Attack

Given the problem of determining the distribution function
of a given statistic 6 for samples of size #» drawn from a given
universe, there are, in general, two methods of attack depending
to a certain extent upon whether the universe is discrete or
continuous. One of these methods consists in finding the exact
mathematical distribution function through the use of integral
calculus. The other, already illustrated in the previous chap-
ters, consists in finding merely certain moments of the dis-
tribution function.

As a simple example of the exact method, let us consider
the problem of determining the distribution function of x where

= x1 + x2. Furthermore, let us assume that values of x; and
x are normally distributed about zero.

One method of finding the distribution of x is to fix on a
definite range, say x to x 4 dx, and then to find the total
probability of the occurrence of all possible combinations of
x; and x2 which will yield a value of x» within the prescribed
interval. The distribution function of x thus obtained will be
the one desired.

The probability that x; lies within the interval x; to x; 4 dx;
at the same time that a» lies within the interval x: to x2 + dx2
is given by the expression

] __.'l'|2 :l’;z
p = — 2"2dx1 € -ﬂ‘zz (1x2
0‘1\/21r U)\/r’ﬂ'

Having fixed on a value of x;, and x being initially fixed,

the value of x2 is of necessity x — x1. Hence we may write
.rll 1 _(J: Il)z
e iy e T dyy
0'1 \/"’1r 0’)\/"1r » ’

which for a proper choice of dx; and dx. is the probability, to
within infinitesimals of higher order, of pairs x; and %2 which
yield a value of x within the interval x to ¥ + dx. When x;




234 ECONOMIC CONTROL OF QUALITY

is allowed to take all values between — o0 and + o0 and dx,
is made to approach zero, we see that the sum of terms like p
approaches the total probability that x; + x; lies within the
prescribed interval.

Hence the total probability P(x)dx that the sum x; + x.
lies within the interval x to ¥ 4 dx is by definition

T =+ _](3.] +(;,_:,.1)2) 3 o
e o' ot Jdxdy=- e 20214032 g,
\/(V|2+¢'22)21r

P(x)dx =

LELEEL I SRR

since dx; — dx as dx, — o.

Thus we are led to the well-known result that the dis-
tribution of a sum of two variables, each of which is normally
distributed, is normal with a variance equal to the sum of the
variances of the given normal distributions. This method may
be extended to a linear sum of any number of variables. Whit-
taker and Robinson! show how through the use of Fourier’s
Integral Theorem it is possible to obtain the distribution
function of a linear function of deviations in a more elegant
manner.

If one can obtain in some such way an exact distribution
function, it is theoretically possible to obtain the integral of this
function over any given range, either exactly or by quadrature
methods.

As an illustration of the modern mathematical tools avail-
able for finding the moments of the distribution of a statistic,
let us consider one ® method of finding the moments of the
mean of a sample of # drawn from any discrete universe.

Assume that the universe 1s defined by s different values

.\’], .Y-_), ey Xi, Ceay .\'.s-,
the relative frequencies of which are

PiyP2yev-y Py, Ps
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Let the frequency of
X, X o, X

in a sample of # independent trials be

Jisfos oo fs

where, of course, some of the /’s may be zero
Then our problem is to investigate the distribution of

2 fiXi
X 1=1
X = o
in possible scts of # trials.
Denote the average and higher moments of the distribution
of the universe by
)—(,P-z,’l:s,...,}l-z,...,

and of the distribution of the mean by
X:\c, Brg, P-:;_T, cees Bigy ey

where, in each case, the moments are measured about the mean.

What we shall do i1s to express the py’s in terms of the p’s,
which for a given universe are known constants. Since the
mean value of X in an indefinitely large number of samples is
X, we may replace Xy by X in finding expressions for the
higher moments of X.

Romanovsky has developed an elegant and simple way of
obtaining these moments as follows: Consider the function of ¢

defined by

(X,

t
U= Xpc

1 - 1 < t
1 -X) XNy —=X) v, -X)
= [ple"( ! + pzt’”( ' + ...+ p,\»r,"( ] .

By the multinomial theorem we have
N\ n! "(\1 -X 10 Hx-% ':(.\'."—X) 1s
U—ijlfg! f![p] J lp-” ] "'[p““’ ]

pzfz . -P*’f’e“i MEASTES 9! (a)

2!
fllfl"fl : ) ) ,
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the summation being extended to all f’s whose sum is 7.

Now the factor

is the probability of getting in # trials /i Xi’s, 2 X2's, . . .,
fs Xs’s. Or, in other words, this factor is the probability of
getting an X constructed in a particular way. Also for a par-
ticular construction of X, the exponent of ¢ is

Lﬁ(\’ - X) = /(X - X).
I==l
Making use of this fact, we have, on differentiating U
r times with respect to # and then setting # = o,

T , "
< dar > = E_fl—']o"—l_f—l ipf . pd(X - X) . ®

This is true since each differentiation of a particular term in
the sum (4) merely multiplies this term by (X — X).

By virtue of the way in which the right-hand side of (4) has
been built up, it is clear that this sum is precisely the rth
moment B, of the mean about its mean value. The method
of obtammg any moment of X is then a very simple one. To
facilitate the work, set

b t
~(x.-X)
w = Zpie" .
i=1

Then

U= w"
Then the zeroth moment of X is -

(U)o =@Pr1+p2+...+p)" = 1.
du T X-% _
= [ — = " — E X__ x
p'lx <({f >l=0 [ 7 im ( ) )]

- IpiXi-X) =o.

t=0
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_(?U
Pox = (dtz t=0

3

-X
(X;-X) +—w <sze(x )

[wn-—l 3 (X.

= Zp

n =1

xes)]

= _Z p;(Xz X)2 = —.
n

Ngay

In an exactly similar way, it can be shown that
13 n .

s = 2 and pap = S pr g B
B = 2 Pix PP

Denoting by Biz and B:y the skewness and flatness re-
spectively of the distribution of the averages, we have by
definition

_Mmy _ 3n-1) , p\# B3
ﬁzx . - < i P + ”3> o ” +3,

where Bi and B. are the skewness and flatness respectively of
the universe. Of course it is possible, by the above method,
to go much further than this and to find expressions for Bix
of any desired order 7. However, our present purpose is merely
to illustrate one of the modern methods of finding the moments
of the distribution of a statistic.

A. Some Numerical Results—To fix in our minds the sig-
nificance of the above results, let us use them to calculate the
statistics of the universe of averages, column 3, Table 2s.
We get

Xz = X = 2.500000000

o 1.1180339887

Oy = — = ———>—" = 0.5§59016994,
X = " 55901699435 ’
o
Blr—"ﬁl:—:O
n 4

+ 3 = 2.660000000.
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These results obtainable through the use of the first four
moments of the universe without going through the details of
getting the distribution in column 3, Table 25, are the same
to the number of places shown as the results obtained directly
from the distribution in column 3.

In this same connection, it will be interesting to compare
the values of mean variance ¢2 and o,: obtained from (68) for
the distribution of variance in samples of four drawn from the
experimental universe of Chapter XTII with that calculated
directly from column 4 of Table 25.

From (68) we get

$(1.25) = 0.9375

G, = o:\fz; l-[(u - 1)B2—n+ 3]

25/ —e
= I—;i'\/?s(l.().q.) -4 + 3] = o.3125 \/0.75(3.92)
= (0.3125)(1.714642820) = 0.5358258812.

These results check to the number of places shown those
obtained directly.

B. Comparison of the Two Methods—Whenever the exact
distribution of a statistic can be found by integration, we have
more information than can be provided by the knowledge of
any number of moments of the distribution of the same statistic.
In other words, when the distribution of a statistic ©; is
known as a function of 6;, the probability that the statistic
will take on values lying between any given limits can
be found either by direct mtcgratlon or by quadrature
methods.

On the other hand, if only the moments of the distribution
of ©; are known, we can never be quite sure what the form of
the distribution is. For example, Bix — 0 and B:x — 3 as #
becomes large but even if we actually had Bix = o and
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B2z = 3, we could not infer that the distribution of X was
normal; for obviously the distribution defined by

X —1 o 41
I I 4 I

has! B; = o, B2 = 3, Bs = o, which are identical with the first
three betas for a normal universe, although this distribution
is far from normal. As a matter of fact, it would be necessary
in this instance to go as far as the sixth moment before we would
discover any difference between it and the normal law function,
so far as moments are concerned.

Suppose then, that the universe we started with had a form
such that the distribution of means actually was identical with
the simple one given above, but we had calculated merely the
moments of this distribution by the above method. We would
find that the first five moments were identical with those of the
normal law, and we might perhaps be tempted to infer that the
distribution of means was normal, although, as we have seen,
such an inference would in fact be far from the truth.

4. Mathematical Distribution Theorv—Important Results

Looking back over the work in the previous chapters, we
see that distribution theory provides us, in certain instances,
with distribution functions of a given statistic © of the form
fo (8,n) such that the integral of this function for a given range
gives us the probability of occurrence of a value of © within
that range. Illustrations of this type are the distribution func-
tions of average, standard deviation, and correlation coefficient.

Similarly, we may have distribution functions of a ratio 2
between two statistics ©; and 6 such that f; (z, #)dz represents
the probability of occurrence of a value of z within the interval
z to z + dz. This kind of function has been illustrated by the
distribution of the ratio of the error of the average to the
observed standard deviation.

1 Of course, uncorrected moments are used here.
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The other important form of distribution to be noted 1is
that of the distribution of two statistics 8; and 6j, such that
fo,, o, (i, ©j, 7)d6;d6; represents the probability of the occur-
rence of values of ©; and ©; within the rectangle 6; to 6; + d6;
and 6; to 6; 4 46;.

It is important to note also that the distribution function
of a given statistic depends upon the functional form of the
universe from which the sample is drawn, and that, in general,
the average or expected value © in samples of size 7 is not the
same as the value of this same statistic for the universe.

5. Mathematical Distribution Theory—Present Status

Any summary of the status of distribution theory today
will likely be out of date before the ink is dry. Here, as in the
field of modern physics, progress is so rapid and along so many
different lincs that even those actively engaged in extending the
theory find it difficult to keep abreast of all that is being done.
A few brief remarks, however, may be of service to the engineer
who cares to become acquainted with some of the important
recent contributions.

The exact distribution of means of samples from normal
populations dates back at least to the time of Gauss, whereas
the exact distribution of variance and standard deviation were
found in 1915 by R. A. Fisher.! In the same article, Fisher
gives the exact distribution of the correlation coefficient in
samples from an indefinitely large normal population. The
same author has since given the exact distributions of the
regression coefficient,? partial correlation coefficient,® and
multiple correlation coefficient,* assuming a normal universe.
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Pearson,! Romanovsky,? and Wishart 3 have also studied these
same distributions.

In 1925, Hotelling4 gave the distribution of the square
of the correlation ratio subject to the conditions that the
variates are not correlated, that the population is indefinitely
large, and that the variates are normally distributed.

Exact distributions of means for certain of the Pearson
type curves other than the normal have been given by Church,?
Irwin,® and Craig.”

Important contributions to the theory of distribution
through the use of moments have been made by Pearson,®
Tchouproff,® Church,'¢ Fisher,'t and Wishart.12

The list of references given in the last few paragraphs is
by no means complete. Instead, it is selective and is intended
to indicate the rapid development!? that is going on in this field.
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6. Importance of Distribution Theory—Further Comments

We are now in a position to consider a little more critically
than has been done the significance of some of the recent
work on the mathematical theory of distribution as it bears
upon the theory of control.

Assuming that an engineer is going to make use of statistical
theory in helping him to do what he wants to do, it is but
natural that he must sooner or later express what he wants to
do in terms of some distribution function of a given quality X
which he is to take as standard; that is to say, he must specify
as a standard of what he wants to do some distribution function
typified by the equation (58) of control

dy = f(_\v, X], Ao ey )\;, e ey X,,,’)(l'X. (58)

-y

Assuming the existencc of a constant system of causes
having as its objective statistical limit this equation of control,
it is necessary to set up limits on one or more different statistics
of samples of size #. In many cascs the control engineer may
also desire to set up limits upon the allowable variation in X
itself and in the fraction of the observed values of X which lie
beyond some particular pre-assigned value.

Let us consider first the problem so often met in practice
of setting a limit X 4 #o on the variable X such that the
objective probability that an observed value of X will fall
between this limit ! and + oo is p, where X and o are the
average and standard deviation of the universe (8) of control.
To do this it is necessary to find the value of # from the equation

p =f A7 Uk Y VR Wy
X At .

Expressed in this general way, the formal problem of
establishing the value of # for a given value p appears to be
quite simple. When, however, we consider the theory of
frequency distributions, we find that this problem is not so
simple as it appears when the value ¢ corresponding to the

1 The same discussion obviously applies to the negative tail.
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chosen value of p is greater than three, at least for most of the
standard functions involving not more than four parameters.
In fact, certain of these frequency functions may be found to
have negative frequencies for values of X outside of a sym-
metrical range something ! like X + 30. This is true of the
second approximation (23) for certain values of k.

This fact is significant because it shows that when an en-
gineer attempts to set some particular limit X + 0 such that
the objective probability of an observed value falling beyond
this limit shall be p (where p is perhaps of the order of o.co1
or less), even the solution of the formal problem may be dif-
ficult. Of course, he might appeal to experience, observe the
value of X a large number of times under what he assumes to
be a controlled condition, and in this way try to approach as a
statistical limit the exact objective frequency distribution to
which any of the customary theoretical distributions would
simply be an approximation. One docs not need to go far to
see, however, that such a procedure is not, in general, feasible
if for no other reason than becausc it would require a large
number of trials in order to justify the establishment of such
a limit in anything like a satisfactory manner—it being true,
of course, that one could never be sure of results obtained in
this way.

Passing to the more general problem of establishing sampling
limits on any statistic O in samples of # drawn from the universe
(58), it 1s of practical importance to note that with but few
exceptions the exact frequency distribution function of such a
statistic is unknown even when the universe (58) is continuous.
When the universe is not continuous—it never is in practice—
we must be satisfied with a knowledge of the moments of the
distribution function of the statistic expressed in terms of the
moments of the universe (58). For example, in the previous
paragraph we have spoken briefly of a method of expressmg
any moment of the average of a sample of # in terms of the

! This point is emphasized in the writings of Edgeworth and is touched upon in
various places in Bowley’s summary of * Edgeworth’s Contributions to Mathematical
Statistics,” published by the Royal Statistical Society, 1928.
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moments of the universe. We have seen that to be able to
specify the moments of the distribution of averages in samples
of size # beyond the fourth moment requires a knowledge of
moments of the universe higher than the fourth.

This is significant from an engineering viewpoint because
it shows that if we are going to try to establish sampling limits
even on such a simple statistic as the arithmetic mean with a
comparatively high degree of precision in respect to the objec-
tive probability associated with the tail of this distribution,
we must certainly be in a position to specify the moments of
the accepted standard (58) of control beyond the fourth—
something that it is obviously very difficult to do.

What we have said in respect to the establishment of
sampling limits on the average is all the more true when we
attempt to establish limits on other statistics such, for example,
as the variance. This follows from the work of Tchouproff and
Church 1 showing that the equation relating the fourth moment
of the distribution of variance in samples of # to the moments
of the universe involves the eighth moment of the universe—
to obtain which is certainly not feasible.

There is another reason why it is difficult to attain great
precision in the estimate of the probability associated with an
asymmetrical range as we shall now see. Several times in the
previous section we pointed out the significance of the fact that
sampling from a discrete universe may give results radically
different from those obtained when sampling in a similar way
from a continuous universe. This is particularly important
because we seldom see fit to classify measurements into more
than ten to twenty cells, and it does not appear feasible to
introduce moment corrections which allow us to go from the
discrete to the continuous case with a known degree of
precision.

We have considered at some length the approach of the
distribution of the average to normality with increase in sample
size irrespective of the parent population (58) as characterized
by the first two §’s of this distribution. The comparatively

! Loc. cit.
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recent work of Holzinger and Church! shows that the dis-
tribution function of averages from a U-shaped universe is not
even unimodal for small samples and appears to approach uni-
modality and symmetry only for samples of the order of fifty
or more. In fact, they conclude that the distribution function
of averages of less than fifty cannot be satisfactorily repre-
sented by a continuous curve. In such a case we must rely
upon the application of the Tchebycheff inequality as we have
done.

This kind of evidence indicates the nature of the difficulites
involved in trying to establish asymmectrical limits on the
sampling fluctuations of any statistic and it helps us appreciate
the significance of the powerful Tchebycheff inequality in the
establishment of symmetrical limits with at least a known upper
bound to the crror that we may make in the estimate of the
probability associated with these limits provided only that we
know the two simple statistics X and o of the universe.

The fact that we do not, in general, know the exact distri-
bution function of measures of correlation other than the
correlation coefficient in terms of the specified correlation in
the universe precludes the use of these statistics in that we
cannot establish their control limits. For this reason, we have
not discussed the mathematical distribution theory for these
statistics.

1 “On the Means of Samples from a U-shaped Population,” Biometrika, Vol. XX-A,
pp- 361-388.
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CHAPTER XVII

DesioN LiMITS ON VARIABILITY

1. Tolerances

Since all pieces of a given kind of product cannot be made
identical, it is customary practice to establish allowable or
tolerance ranges of variability for each of the measured quality
characteristics. For example, if a shaft is to work in a bearing,
we must allow for a certain clearance. In such a case the
specifications usually require that a shaft have a diameter not
less than some minimum nor more than some maximum value,
and that the diameter of the bearing must not be less than some
minimum nor more than some maximum value. An illustration
taken from practice is:

Maxi limit o, .
Diameter of Shaft :ax.lmum _lm_lt 750 ,mCh
Minimum limit 0.7496 inch

Maximum limit 0.7507 inch

Diameter of Bearing . o .
Minimum limit o.7502 inch
Assuming that the diameters can be measured accurately to
the fourth decimal place, we see that the minimum and max-
imum clearances are 0.0002 inch and 0.0011 inch respectively.
The tolerance range for a given quality X is defined as the
range between the maximum and minimum tolerance limits
specified for this quality, Iig. 83. Sometimes these limits are
called tolerances. Perhaps more often, however, these limits
are given in the form X; = X — AX and X: = X + AX, and
in this case AX is called a tolerance. To avoid any misunder-
standing that might arise because of the apparent lack of uni-
formity in the definition of tolerance we shall use the terms

249
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tolerance range and tolerance limits wherever necessary to make
the meaning clear.

2. Tolerances Where 100 Per Cent Inspection Cannot Be Made
Where the quality X can be inspected on every piece of
apparatus by some go-no-go gauge, it is easy to separate product
into two classes—that which does and that which does not fall
within the tolerance range. If, however, we are testing for

fj¢——————TOLERANCE RANGE —————»-

QUALITY x

MINIMUM  LIMIT MAXIMUM LIMIT
X, X2

Fi1g. 83.— Rrrationsuir BRrwrEN ToLeraNcE RanGeE aNp ToLeraNce Limrrs.

some quality such as tensile strength, it is obviously not possible
to make 100 per cent inspection to sce that the tolerance is met.
In this case our information about a lot of N pieces of
product must be obtained from tests made on a sample of #
pieces. The usual practice is to establish tolerance limits
for the quality X and also tolerance limits for the fraction
defective in the lot, or, in other words, the fraction of the
total number of pieces of product in the lot having a quality
X lying outside the tolerance limits for this quality, Fig. 84.
Usually zero is taken as the lower limit for the fraction defec-
tive in the lot. Since our information must depend upon a
sample, it is also necessary to establish tolerance limits on the
fraction defective found in the sample, the lower limit being
zero. These two kinds may be thought of as lot and sample
tolerances, and they are related one to the other through a
risk associated with the given so.mplmg plan as will be indi-
cated in Part VII, thus making it necessary for the sample
tolerance to depend upon the number # in the sample.

3. Importance of Control in Setting Economic Tolerance

In general, a tolerance range on a quality X should be as
small as possible. 1f it is too small, however, the rejections
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will be excessive. In other words, the design engineer tries to
balance the rate of increase in value of reducing a tolerance

range against the rate of increase of cost of such a procedure
because of increased reiections.

TOLERANCE RANGE ——

QUALITY X

MINIMUM LIMIT MAXIMUM LIMIT
X X2

TOLERANCE RANGE

_FRACTION DEFECTIVE

[ !
LOWER LIMIT UPPER LIMIT
Py P2

F1G. 84.—Two Sk1s oF ToLeraNcE Limirs Necessary Wnen 100 Per CENT INsPEC-
110N Cannot re Mabr.

From what has previously been said, it is obvious that, if a
design engineer knows that the quality X' of a material or

== CONTROLLED DISTRIBUTION
d3=f (xv A 12' "'vlm')dx

PROBABILITY OF REJECTION p

MINIMUM LIMIT M.AXIMUM LIMmT
Xy X2
QUALITY X

,
Fic. 85.—ToLEraNCE ON Fracrion DEerecrive ror CoNrroLLED QuALITY.

piece-part cntering into his design is statistically controlled in
accord with some probability distribution such as illustrated by
the smooth curve, Fig. 85, then he knows the expected number



252 ECONOMIC CONTROL OF QUALITY

PN of rejections that will occur in the production of a number
N of these piece-parts for a given set of limits. Only under
these conditions of control is it a comparatively simple process
to find an economic tolerance range.

Hence, to set an economic tolerance range it is necessary that
the qualities of materials and piece-parts be controlled.

4. Tolerances where 100 Per Cent Inspection Cannot be Made—
Importance of Coutrol

When 100 per cent inspection cannot be made, we never
know that the tolcrance on a quality X is being met, even
though it is met in the sample. Later we shall show that any
inference about what exists in the remainder of the lot from
what was found in the sample depends entirely upon what we
assume about the lot before the sample was taken, and that the
significance of such an assumption depends upon whether or
not we assume that the product is controlled. If, however,
instead of trying to use the double tolerance described in Para-
graph 2 above, the design engineer makes use of raw materials
and piece-parts previously shown to be statistically controlled
with accepted expected values and standard deviations, he
need only specify that the qualities of all materials and piece-
parts going into his design be controlled with accepted average
values and standard deviations.

Hence we see that it is very desirable to know that the quality
of a product is controlled when it cannot be given 100 per cent
inspection.

5. Tolerances for Quality of Finished Product in Terms of
Tolerances of Piece-parts

Let us consider a very simple problem. Assume that an
engineer wishes to design a circuit containing m different
pieces of standard apparatus, such as relays, transformers,
and so on. Suppose that he wishes to set a tolerance range on
the overall resistance in the circuit and that the tolerance
limits on the resistances of these 7 different pieces of apparatus
are respectively Ry and Riz; Rz and Rex; .. .5 Ra and Rig;
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.. .3 Rm and Rma. What shall the engineer use as the tolerance
range for the overall resistance?
The answer to the question is obviously

Riz+Roo+.. .+ Ri2+.. .+ Rm2—Ri1—Re1—...—Ri1t—...—Rm,
Ry Ri2
R Ri2
v !'
Rmj Rm2

Fic. 86.—ToLErANCE RaNGES oN OBseERVED DISTRIBUTIONS.

if we hold to the definition of a tolcrance as the range between
the maximum and minimum possible values of the quality.
Before accepting this answer, however, let us consider the
problem further.

Oftentimes we find that the previously observed distri-
butions in the m different resistances are somewhat as indicated
by the smooth distribution curves in Fig. 86. We see that in
some instances the tolerances are such as to cause rejections
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in both the upper and lower ranges of the resistance as in the
case of the quality R;. At other times the condition may be
such as indicated for the resistances R, and Rm.

When the number m of different resistances is large, it is
obvious that the number of times that we may expect to get a
combination of m resistances chosen at random (one each
from the m different kinds of resistances) that will add up to
either the maximum or minimum limit is very small indeed.
The question arises, therefore, as to whether or not it is eco-
nomical to allow in design for an over-all tolerance range equal
to the range between the possible maximum and minimum
resistances that may occur.

Let us consider this problem upon the basis of the assump-
tion that each of the m kinds of apparatus is manufactured
under conditions such that the resistances are controlled about
average values

ix.ig,. .. Ry ... ,im,

with standard deviations

gy, Og, .. o, Om.

’ L} Yty

For the sake of simplicity, let us assume that the resistances
are normally controlled, or, in other words, that the distribution
function for each resistance is normal. IFrom what has previ-
ously been said, it would be quite reasonable to adopt the
tolerance limits

R+ 302

on the ith resistance. If we adopted such a set of m toler-
ance limits, and followed the practice previously described of
taking the difference between the sums of the maximum and
minimum possible resistance as the tolerance for the sum of
the resistances, we would have a tolerance range such as that
schematically indicated in Fig. 87-4. Let us now consider why
such a tolerance range may not be economical.

As may be shown, the expected distribution of the sum of
m resistances chosen from the 7 different kinds of resistances
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as indicated above would be normal with an expected or mean
value equal to ZR; and a standard deviation

= Vo240l q. . . 402 +...+0m2

Suppose that we assume, as a simple case, that each of the m
standard deviations is equal to, let us say, ;. It is obvious
that the standard deviation of the sum is

o = Vmo,.

Starting with these simple assumptions, we may easﬂy draw
the frequency distribution function of the resultant resistance

‘F——TOLERANCE RANGE -|

1
M‘ylMUM LiMIT zil MA_X'MUM LIMIT
IR, — 3Z¢i IR, + 3I0;
QUALITY X

(a)

i
f 1 1 T T
MINIMUM LIMIT IR, _ MAXIMUM LIMIT
IR; — 3I0; IR, —30 IR, -30 IR; + 3I0,
QUALITY X
()

F1e. 87.—ILLusrraTing ProPER WaY 10 SET Limrrs.

for any special case. Iig. 87-4 shows such a distribution cor-
responding to nine component resistances in the circuit or to the
case m = 9. For purposes of comparison, the additive tol-
erance previously described is also shown for m = g. We see
at once that the practice of adding tolerance limits may be
uneconomical because the chance is rclatively very small that
a resultant resistance would ever lie outside the limits ZR; =+ 30.

Having considered this simple illustration, we are in a
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position to discuss the general problem of setting overall toler-
ance limits in terms of tolerance limits of piece-parts.

6. The General Problem of Setting Tolerances on Controlled
Product

As a perfectiy general case, let us assume that the quality X
upon which we wish to set tolerance limits depends upon the
qualities X, Xz, ..., Xi, ..., Xmof m different piece-parts or
kinds of raw material. Interpreted from the viewpoint of
control, this means that we wish to set two limits on X which
will include a certain fraction P of the product in the long run.
We shall show how this can be done upon the basis of the
assumption that each of the m component qualities are con-
trolled about expected values

X],Xg,...,xi,...,Xm,

with standard deviations

g, O

2y - -

ey Oiy v vty O,

subject to certain limitations.
Let us assume that we may write

X=FX, Xoyooo, X5, A,

Furthermore, let us assume that the quality X" may be expanded
in a Taylor’s series so that to a first order of approximation we
may write

X=FXi,X2,....X4,..., Xm)+arx1+azxs+...Faixi+...+amsm,

where .
vpo= Xij— Xq

&)
ai = (——
: X, )_(I’

it being understood that X3 in this case is any one of the
possible values of the quality X.

and



DESIGN LIMITS ON VARIABILITY 257

It may easily be shown under these conditions that the
expected value X and the standard deviation ox of the distri-
bution of quality X of product assembled at random are given
by the following equations:

X=F(X],Xz,...,xi,...,im)
(82)

P P N o 2 P
Oy = ‘\/a1~0'1~+ag-0';5~+ et aitr ol amtom

No matter what the nature of the distribution functions
f1(X1), f2(X2), . . ., fi(Xa), . . ., fm(Xm), Equations (82) enable
us to write down the expected resultant quality X and the
standard deviation ox of this quality about the expected value
subject to the limitations already considered. Making appli-
cation of T'chebycheff’s thcorem, we can say that the probability
Pis that the resultant quality will lie within the interval

X0k
satisfies the inequality

! [l

Pioy > 1 — -

~
t

For example, one can say with certainty that in the long
run more than (1 — §) of the product will have a quality .\’
lying within the limits X =+ 30x. In the simple case con-
sidered in the previous paragraph, where it is assumed that
the distribution function for each of the m quality character-
istics is normal, we see that the probability Psey is equal to
0.9973. It is exceedingly important from our present viewpoint
to note that so long as we know nothing about the distribution
function of each of the m quality characteristics, we can only
make use of (82) in connection with Tchebycheff’s theorem.
The more we know about these functions, the more accurately
we can establish the probability Pie,.

If the distribution functions of the m quality characteristics
are alike in respect to their second, third and fourth moments,
it may easily be shown that the skewness kx and the flatness
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B2y of the distribution of quality X are given! by the following
equations:

k
SRV
(83)
_B:-3
B2X_ m +3

where k and B; are the skewness and flatness of the distribution
of any one of the m quality characteristics. Thus we see that
under these conditions the skewness and flatness of the resultant
distribution will be approximately normal, even though the
individual qualities are distributed in a way such that their
skewness and flatness are appreciably different from zero and
three respectively.

In the more general case, where the distribution functions
for the m different quality characteristics are not all alike, it
may also be shown that the distribution of the resultant effect
X will approach normality 2 as m — .

These results are of great importance as indicating the
magnitude of the advantages that accrue from specifying the
distribution of any one of the 7 qualities other than by saying
that they shall be controlled about known average values with
known standard deviations. Even though the distribution func-
tion of XA approaches normality as 7 increases, it is usually true
in a specific case that it would be very difficult to characterize
the functions of the 7 component qualities with such precision
as to enable the determination of the probability Pi to within,
let us say, 1 per cent. In other words, it appears that, from a
design viewpoint, there are many advantages to be gained by
specifying that the quality of raw materials and piece-parts
shall be controlled about known averages and with known
standard deviations, although it appears that the advantages
to be gained by trying to specify the functional forms of the
controlled distributions and more than these two parameters
of the distributions are offset by certain disadvantages.

1 Compare with (63).
2 See Appendix I.
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Hence from a design viewpoint we conclude that the specifi-
cation of control should include the specification of expected value
Xi and standard deviation o; of any quality characteristic X;.

We are now in a place to consider the more general problem
of designing a complicated piece of apparatus so that the
quality of the product will have minimum variability.

7. Design for Minimum Iariability

Again let us assume that the resultant quality X is a function

F of the qualitics z‘(}, .Y:, ey B T , ‘Ym, or that

X o= KV Xay e Ny ),
and that we wish to make a product having an expected quality
X with minimum standard deviation ox.

We shall assume that the m quality characteristics are
controlled about expected values Xi, X, . .« ., Xiy - « - , Xm with
standard deviations o7, 02, . .., 04, . . ., Om.

Making the same kind of dssumptmns as in Paragraph 6
about the e)‘pms]b)hty of the quality A" by means of Taylor’s
theorem, we may write

’ . ) . > i . D
Oy = Va 0>+ a0 +...+a 0+ ...+ an® on?,

I

X =F(i1,i‘2,...,xh...,Xm),

where, as in the preceding pardgraph a; 1s a function of the
m mecan valucs. Our problem now is one of mlmmlzmg oy
subject to the restriction imposed by the last equation. This
will be recognized as a problem in the theory of maxima and
minima. Expressed in terms of the Lagrange indcterminate
multiplier X it involves the solution of the following m + 1
equations: ’

2(0,%) oF
— - 2\ ¢}
oXi oXi (84)
X =1"(Xl,i:z,. . ,ii, e ,X_m)]
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It may not be feasible to solve this set of m + 1 equations
for the unknowns X;, Xa, . . . , Xm and X because of their com-

SPECIES A
[ I L 1 l L 1 |l L I 1 1 l dn
[ [ 2 3 |4 5 6 7 Y o 1 12 |13
L X L2
SPECIES B
L 1 1 I 1 1 1 1 1 e 1 1 1 J
0 1 2 | a 4 5 |6 7 s o o n 12 13
Ly X Lo
SPECIES C
L 1 yl A L J
] h 2 3 4 6] 7 8 ° o n 12 13
Ly X Lo
SPECIES D

| R S 1 1 1 1 1 1 L ]
]l a4 5 e | 8 9 o] n 12 13
Ly X LZ
F1. 88.—TvyricaL RELA1ION BETWEEN Exrecrep VALUES AND STANDARD
DEviaTions.

plexity. Again it is possible that the solution may contain zero,
infinite, or imaginary values of the X’s. Such solutions are
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obviously of no practical significance. We see that, in addition
to knowing that the qualities of piece-parts and raw materials
are controlled, it is essential only to know the averages and
standard deviations of the distribution functions of the component
qualities.

In practice limitations are often imposed upon the possible
magnitudes of the expected values of the m quality charac-
teristics other than those already considered. For example,
one or more of these quality characteristics may be properties
of material such as density, tensile strength, resistance, coeffi-
cient of expansion, and so on. Obviously, in choosing the
expected values in such a case, we are limited to the expected
values of the available raw materials, unless we develop some
alloy having the desired expected value.

Also, in practice, the choice of an expected value of a quality
cannot usually be made independent of the choice of its stand-
ard deviation. Thus in the case of a physical property of a
material there is, in gencral, some relationship between the
expected value of the property or quality and its standard
deviation. This fact is illustrated in Fig. 88 showing the
relative expected values and standard deviations of modulus of
rupture of four kinds of telephone poles. We see that, broadly
speaking, the standard deviation increases with increase in
expected modulus of rupture.



CHAPTER XVIII

SPECIFICATION OF STANDARD QUALITY

1. Standard Quality

We often think of a standard of quality as being either a
specified value Xs or a value X lying within some specified
tolerance limits X; and X.. If, however, we try to produce all
units of a given kind of product with a standard quality X,
the best we can hope to do, as we have seen in Parts T and 111,

Xg
1 | |
X' x X J
QUALITY X [ X2
QUALITY X
@)
(b)

Fia. 89.—Common Concrprrs ok Stanparp Quartry,

is to make a product whose quality A" satisfics the equation of
control

d}y = f(‘\', )\], x_', ey )\1', “e ey kII)/)y (58)

with an expected value X somewhere near the specified standard
or ideal value Xy as indicated schematically in T'ig. 89-. Sim-
ilarly, if onc attempts to make a product all units of which
will have a quality within the tolerance range Xy to X, he will
usually end up, after having done everything feasible to attain
constancy, by making a product whose quality will be dis-
tributed as indicated schematically in Fig. 89-4. Tt is possible
that the tolerance limits X; and X> will lie outside the limits
of the curve (§8) although this is scldom the case.
262
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These standards are, as it were, ideals. We may, however,
gain certain advantages by looking upon standard quality in
a slightly different way as being the distribution function
representing what we can hope to do in our attempt to attain
an ideal standard quality. This objective standard quality
distribution represents what we may expect to get when we
have done everything feasible to eliminate assignable causes of
variability in the quality. Hence, if we are to be able to inter-
pret the significance of observed variability in quality, it is
necessary to adopt or specify some such distribution function
to be accepted as a standard for each quality characteristic.
Then, so long as the observed variability in quality of » pieces
of product may be interpreted as a sampling fluctuation in the
cffects of the constant system of chance causes characterized
by the accepted standard distribution function for this quality
characteristic, there is no need to worry over the observed
variation because it is likely that there is nothing that we can
do about it.

The question now to be considered is: What are the factors
that determine how far we should try to go in specifying dis-
tribution functions to be used as standards? In the prev10us
chapter we have shown that, from a design viewpoint, it is
usually satisfactory to specify only the average X and the
standard deviation & of the distribution, whereas complete
specification would require the functional form f and the numer-
ical value of each of the m’ parameters. Furthermore, it is
obvious that the specification must be such as to provide a
satisfactory basis for detecting lack of control in the two
important design characteristics X and o of the distribution
of effects of the chance cause system.

It 1s necessary that we consider at this time the character
of the specification to be required, because upon the choice of
specification depends much of the treatment to follow in the
discussion of the two problems:

(@) Establishment of sampling limits to detect lack of
control to be treated in Part VI.
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() Statistical estimation involved in establishing quality
standards to be treated in Part VI.

2. Types of Specification

Type I: The probability of the production of a defective piece
of product shall be p.

This type of specification corresponds to making the toler-
ance limits either — 00 and some value X3, or some value X,

/N
/

\
\.

QUALITY X

F16. go.—THREE UNIVERSES OF EFFECTS SATISFYING THE SPECIFICATION THAT THE
Propariniry p Suart BE ConsTanT.

and 4 oo, and to specifying that the probability of X lying
outside such a tolerance shall be p. It is obvious that this form
of specification does not fix the form of the distribution func-
tion (58). For example, Fig. go shows three distribution
functions which satisfy the specification Type I, although they
are distinctly different. Hence the necessary design infor-
mation, viz., the average and standard deviation of the distri-
bution function, is not fixed by this type of specification.

It follows from what was said in Part IV that we may
establish sampling limits within which the observed fraction p



SPECIFICATION OF STANDARD QUALITY 265

defective in a sample of # may be expected to fall with a
specified probability P. Hence this form of specification
provides a basis for detection of lack of control although it fails
to give requisite design information.

Type II: The expected or average quality shall be X.

This form of specification is sometimes considered when
we would like to specify that the quality should be some ideal
standard value Xs. It is apparent that there is an indefinitely
large number of frequency functions satisfying this specification,
but differing in respect to dispersion, skewness, and other char-
acteristics as is illustrated schematically in Iig. gr1.

QUALITY X

F1c. 91.—Turre UNiverses oF EFFECTS SATISFYING THE SPECIFICATION THAT THE
ExpectED Varue Suarn Be X.

It follows that specification Type 11 fails to give the infor-
mation which makes possible the establishment of design limits
on the variability of quality. Neither does it give information
basic to the establishment of limits within which the observed
quality may be expected to vary without indicating lack of
control. Hence this form of specification is of comparatively
little value from the viewpoint either of design or control.

Type I11: The average or expected quality shall be X and the
standard deviation shall be o.

This specification gives the requisite design information, and
so long as quality of product satisfies this specification, we know
from Tchebycheff’s theorem that the probability Pie that a
piece of product will have a quality X lying within the range

< . = . 1 )
between the two limits X =+ fo is greater than 1 — ry This
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statement is true independent of whether the function f in the
objective equation of control is or is not continuous.!

To emphasize the importance of the use of Tchebycheff’s
theorem in this connection, we show in Fig. g2 four distributions

} 1
-t v——-}— +t6——
| -~
QUALITY X
Fic. y2.—Four Univrrses oF Frrrers
SATISFYING THE SPECIFICATION [HAT THE

Exrecrep Varuvr Shaire BE X AND
Stanparp DEviarion Suair BE o

having approximately the
same average X and standard
deviation 0. The dotted limits
are drawn at X =+ 30. Hence
we should expect to find more
than 89 per cent of the total
area for each distribution
within the limits. In fact, no
matter what distribution we
might construct with average
X and standard deviation o,
we would find that more than
8¢ per cent of the arca would
fall within the dotted limits.
From the viewpoint of
control, we have seen in Part
IV that sampling limits may
be sct on averages of size u
if we know o and that the
probability associated with
any limits X7 to X. for the
average X of a sample of 7 is
given quite accurately by the
normal law integral, at least
when 7 is large. Furthermore,
sampling limits can be estab-
lished for observed standard

deviation or variance in samples of #, and the probability asso-
ciated with a given range o1 to o2 can be quite accurately
estimated if we can assure ourselves that the function f is

approximately normal.

IThis is true at least for objective distributions of the type possible in

practice.
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From this discussion we conclude that the specification Type
11Tis far superior to either of the two types previously mentioned.

Type 1V: The average, standard deviation, skewness, and
Satness of the distribution of quality X shall be X, o, k, and B,.

Let us see what the specification of k and Bz adds in the way
of valuable information. In the first place, the knowledge of
these two statistics of the distribution function adds nothing
to our knowledge of the integral of the function over any range
X; to Xz over and above that given by X and o and the use
of Tchebycheff’s theorem. This statement rests upon the
assumption that we know nothing about the function f.

Under the same conditions the knowledge of k and B: is of
little practical value from a control viewpoint, since, as we
have seen in Part IV, not even the expected values and standard
deviations of £ and Bz for samples of size # are known for other
than normal universes, so that we cannot establish sampling
limits on these two statistics.

Hence we come to the important conclusion that the speci-
fication of standard quality in terms of X and ¢ gives us the
maximum amount of usable information, unless we specify f.

3. Importance of Specifying the Function f.

From the discussion of Chapter XII, Part III, we sec that
there is some justification for the belief that the distribution of
a controlled quality is approximately normal or at least is
approximately representable by the first two terms of a Gram—
Charlier series, which has previously been referred to as the
second approximation (23). If then we specify that the func-
tion f shall be normal with X and o as the two parameters, the
specification becomes complete from the viewpoint of both
design and control in that we know for such a product the
probability associated with any interval X; to Xz, and we can
set sampling limits on almost all of the common statistics,
Table 37. Similarly, if we specify that f shall be the first two
terms of a Gram—Charlier series, we can make use of most of
the distribution functions of the simple statistics for a normal
universe as first approximations, and the normal law integral
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gives the probability associated with any symmetrical interval
X =+ to. In these two cases we find X and o playing an impor-
tant role.

Formally, of course, the specification of f and each of the
m’ parameters makes possible the determination' of the proba-
bility associated with any interval X; to X,. We have seen,
however, that little is known about sampling fluctuations in
statistics of samples of 7 drawn from such universes with the
exception of average, variance, and x2. Hence, from a control
viewpoint, having specified X and o, the specification of f or of
any number of parameters does not add as much as one might
at first expect. However, we shall soon see that we must
specify f in order to make possible the most accurate estimates
of such statistics, as p, k, and Ba.

4. Specification—Further Discussion.

Thus far we have considered the problem of specification
as though we could make the function f and parameters ,,
Azy ...y M, ..., My, whatsoever we chose to make them.
Obviously we do not have such freedom of choice. We assume
that there is one and only one objective distribution function
representing the state of control for each quality X, although
we do not assume that these functions are necessarily even of
the same form f for all qualities. This means that the distribu-
tion function for any quality X must be found before it can be
specified. Our previous discussion is of interest therefore in
indicating the relative importance of different forms of specifica-
tion, thus indicating the extent to which we should try to go in
finding the distribution function of control in a specific case.

In any case we need to estimate the expected value X and
standard deviation @ of the objective distribution representing
the state of control. Whether we try to go further and specify
p, k, B2, and f depends upon whether or not the kind of infor-
mation given by such a specification justifies the added expense
of estimating these characteristics of the objective distribution

1 'The use of complicated quadrature methods is often necessary.
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and the expense of the extensive inspection required to assure
the producer that the quality of product does not vary beyond
reasonable sampling limits in respect to these characteristics.

It is of interest to point out at this stage of our discussion
that the specification of p, k, and B, introduces a problem in
estimation, the solution of which requires the assumption of a
particular functional form f. To illustrate this point, let us
assume that we have a comparatively small sample, say five
observations, in which we are to estimate p. Assuming that
the objective p is of the order of o.o1 as is often the case in
practice, it is obvious that we cannot use the observed fraction
2 in a small sample as a basis of estimating p. The best we
can do perhaps is to make use of our estimates of X and o
derived from the sample as a basis for the estimate of p. On
the other hand, the estimate of p derived in this way involves
an assumption as to the functional form f. We may, by mak-
ing use of Tchebycheff’s relationship, state certain bounds
within which it is likely that p lies.

Of course, when we have a large sample representing what
we assume to be the condition of control, it is possible to use
the observed fraction p as a basis for an estimate of p, although
even then it is reasonable to believe that we should consider
the general functional form of the distribution in arriving at
an cstimate. For example, Column 2 of Table 40 gives a dis-
tribution of obscrved values! of a variable X. Column 3 of
this table gives a theoretical distribution based upon the
assumption that the distribution function is
—m

T
,—vtan-!

X\
y =yt +-,
2

The theoretical and observed distributions, shown in Fig. 93,
indicate close agreement between theory and observation.
When there is such close agreement it seems reasonable to
assume that the integral of the assumed theoretical distribution
between any two limits X; and X should be taken into con-

1 Elderton, W. P., Frequency Curves and Correlation.
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sideration along with the observed fraction p within the same
limits in estimating the objective fraction p. In other words,
we see that the estimate of p required in a specification involves
the assumption of a particular functional form f which in turn
must be justified upon the grounds that it appears to be the
objective frequency function representing the condition of
control in this specific case.

TaBLE 40.—IMPORTANCE oF DistriBuTioN IFUNCTIONS IN
Esrimaring Fracrion 18 Tarn or DistriBuTion

Cell Observed Distribution | Type 1V Distribution
Midpoint of Variable .Y of Vanable X’
5 10 6
10 13 16
15 41 49
20 115 135
25 326 321
30 675 653
35 1,113 1,108
40 1,528 1,535
45 1,692 1,712
50 1,530 1,522
55 1,122 1,074
6o 610 6oy
65 255 274
70 86 102
75 26 32
80 8 8
85 2 2
[9]e] 1 1
9§ 1 o
= 9154 X 9154

We have seen in the previous paragraphs that if we are to
make use of information given by k and B2, we must also have
a specification of f. Thus, in the example just quoted from
Elderton, the observed values of £ and B: are 0.073 and 3.170
respectively. The fact that the use of these two observed values
of k and B: in the assumed functional form f gives an apparently
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close fit to the observed data, provides us with a certain amount
of assurance that the objective values of skewness k and flat-
ness B: are, for example, different from o and 3 respectively
corresponding to the normal law, or that they are somewhere
in the neighborhood of the values derived from the observed
data.

Enough has been said to show that the problem of estimation
involved in the specification of characteristics other than X and

100
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90 2 o e
e OBSERVED DISTRIBUTION 1
.
80} — NORMAL DISTRIBUTION — 2
--=-1YPE I¥ DISTRIBUTION P
70 |~ — /
‘oo //
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PROBABILITY ASSOCIATED WITH A GIVEN VALUE OF VARIABLE

Fi1c. 93.—Graruical PreEsENiaTION oF Daia 1N TABLE 40.
9. 4

o and the objective fraction p of the distribution of control
involves the assumption of specific forms for f.

5. Conclusion

The specification of quality from the viewpoint of both
deslgn and control should provide X and o. In certain cases it
is desirable that we specify p so as to provide a basis for catching
erratic troubles which, as we shall see later, may not be detected
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through sampling limits established on statistics used to detect
lack of control in X and 6. The accurate estimate of p, how-
ever, involves the introduction of some assumption as to the
functional form f of the distribution (58) of control. The speci-
fication of k and B is, in general, of less importance than that
of p, X, and o.
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CHAPTER XIX

Derection ofF Lack or ControL 1IN RESPECT TO
StanparDp QuaLity

1. The Problem

In Part V we saw that standard quality is characterized by
the equation of control

dy = (X, M, Moy ..o Ny, A)d X, (58)

In particular, we saw that it is desirable to maintain constancy
of this distribution at least in respect to the average X and
standard deviation o. Of course the qualities of samples of
n pieces of product of standard quality may be expected to
show sampling fluctuations.

The problem to be considered in this chapter is that of
establishing an cfficient method for detecting the presence of a
cause of variability other than one of the chance causes belong-
ing to the group which gives the accepted standard distri-
bution (58), or of determining when an observed sample is such
that it is unlikely that it came from a constant cause system
characterized by this distribution.

2. The Basis for Establishing Control Limits

Knowing the distribution function (58), we saw in Part IV
that it is possible, in general, to find a distribution function
fo(0, 1) for a given statistic © calculated for samples of size »
such that the integral

6 ’
P-= f f4(60, 7)d0 (85)

gives the probability that the statistic © will have a value lying
within the limits ©; to 6;. Of course, if the function fg(8, )
275
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is limited in both directions, we may choose ©; and 6. such
that P = 1; and, in this case, any observed value of © falling
outside the limits is a positive indication that standard quality
is not being maintained. If the function fa(6, #) in (85) is dis-
continuous we must replace the integral sign by the symbol of
summation I for discrete ordinates and change our discussion
accordingly. The conclusions, however, remain unchanged.

For the most part, however, we never know fo(8, 7) in
sufficient detail to set up such limits. More important yet is
the fact that, even if we knew the function well enough to set
up limits within which a statistic ® must fall provided the
cause system has not varied from the accepted standard, we
could not say that the occurrence of an observed value of ©
within this range is sufficient to prove that the sample came
from a constant system characterized by the accepted standard
distribution function (58).

How then shall we establish allowable limits on the vari-
ability of samples? Obviously, the basis for such limits must
be, in the last analysis, empirical. Under such conditions it
seems reasonable to choosc limits ©; and 62 on some statistic
such that the associated probability P is economic in the scnse
now to baexplained. If more than one statistic is used, then
the limits on all the statistics should be chosen so that the
probability of looking for trouble when any one of the chosen
statistics falls outside its own limits is economic.

Even when no trouble exists, we shall look for trouble
(1 — P)N times on the average after inspecting N samples of
size #n. On the other hand, the smaller the probability P the
more often in the long run may we expect to catch trouble if
it exists. We must try to strike a balance between the ad-
vantages to be gained by incrcasing the value P through
reduction in the cost of looking for trouble when it does not
exist and the disadvantages occasioned by overlooking troubles
that do exist. It is conceivable, therefore, that there is some
economic value P or pair of limits ©, and 6 for each quality
characteristic. It is perhaps unnecessary to say that the
determination of the economic value P and the associated
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limits must be an approximation in any case. Furthermore, it
is obviously necessary to adopt some value which will be
acceptable for practically all quality characteristics, although
the economic value P for one quality may not be the same as
that for another.

With these points in mind we shall consider a few principles
to guide our choice of ©; and 6,. In general, it is reasonable
to believe that the objective economic values of ©; and 6.
are not symmetrically spaced in respect to the expected value
O of the statistic. It is perhaps more reasonable to assume
that they are so spaced as to cut off equal tails of the function
fo(8, 7). Under these conditions it is reasonable to try to set
limits ©; and ©. that will satisfy this condition. From the
discussion in Part IV we see, however, that even when the
distribution (58) is known, the distribution function fo(0, #)
for a given statistic © is seldom known in sufficient detail to
make it possible to choose ©; and ©: to cut off equal tails.
Even more important is the fact that we seldom care to specify
f accurately enough to make possible the setting of such limits.

For these rcasons we usually choose a symmetrical range
characterized by limits

6+ 10, (86)

symmetrically spaced in reference to©. Tchebycheff’s theorem
tells us that the probability P that an observed value of ©
will lic within these limits so long as the quality standard 1s
maintained satisfies the incquality

I
P>1--.
t-l

We are still faced with the choice of 2. Experience indicates
that # = 3 seems to be an acceptable economic value.

Hence the method for establishing allowable limits of vari-
ation in a statistic © depends upon theory to furnish the
expected value © and the standard deviation o4 of the statistic
0 and upon empirical evidence to justify the choice of limits
0 + 1o,
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3. Choice of Statistic to Detect Change in Average Quality

Suppose, for example, that

dy = f(4\', X], 7\2, .

LIE} Ma ) X'm')d/Yv) (58)

with an expected value X, is the standard of quality and that
we are to detect a change in quality in which only the expected

\ (X.X“"'-lm‘)

X
(@)
STANDARD X +aX
QUALITY (b)
SHIFT IN
EXPECTED VALUE
; i
©) |

-

l (d)
DISTRIBUTIONS OF MEANS
USED IN DETECTING SHIFT

i
(e) ‘/lf

1
1 (f)

DISTRIBUTIONS OF MEDIANS
USED IN DETECTING SHIFT

F16. 94.—TLLusrrRATING IMPORTANCE OF
Proper CHolck or Siatisics.

value changes from X to
X + AX. What statistic of the
sample should we use to detect
this change in order to minimize
the number of observations
required?

To start with, let us assume
that (58) is a normal distri-
bution. Obviously then, we
might use either the median
or arithmetic mean of a
sample to detect a change AX
in the expected value X. To
illustrate, let us assume that
the standard quality is distrib-
uted as in Kig. 94-2 and that
the shift AX in expected valuc
is represented by Iig. g94-6.
L.et us assume also that the
distribution of arithmetic means
and that of medians are nor-
mal as indicated in Figs. g4-c
and g9g4-¢ respectively. This

situation is practically met when ‘the sample size is large,
in which case the standard deviation of the distribution of

o o .
medians is 1.253 —— and that of means is ——. These values
/4

H

of standard deviation were used in drawing Figs. g4-c and 94-e.
Limits including equal areas of Figs. 94-c and 94-¢ are shown.
The curves of Figs. 94-d and 94-f represent the distributions of
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averages and medians about the expected value X + AX.
Obviously, the area of Fig. 94-d outside the dotted limits for
means is greater than the area of Fig. 94-f outside the limits for
medians. Hence, for a given increase AX, we may expect to
have an indication of trouble more often by limits set on arith-
metic means than by those set on medians.

In general, if ©; and O, are two statistics (such as median
and arithmetic mean) used to detect a change in some charac-
teristic ® of the universe; if the functions fo,(01,#) and
f0,(02, #) are symmetric, monotonic, and unimodal; if the
standard deviations of O; and ©: fall off in the same way with
increase in sample size #; and if 6, = 6, = ©, then we may
say that that statistic having the smaller standard deviation
should be used in detecting the change AX.

Now, if there exists a statistic © such that the use of any
other statistic ©; does not throw any further light upon the
value of the parameter to be estimated, then © is said to be a
sufficient statistic, and is, of all statistics of this class, the one
to use, provided it can be shown that 7t is also the most efficient.

In this connection, some very useful theory has been con-
tributed by R. A. Fisher.! He shows that if o and oy, the

. . 1
standard deviations of © and 6, respectively, fall off as 7
"
and if © and 6, are normally correlated with correlation coefhi-
cient r, then the above criterion of sufficiency leads to the

relationship
g = rﬂ'l,

showing that © is morc efficient than ©, and that under the
given conditions

r=\VE, (87)
where E is the cfficiency of 0 as compared to 8. If, in practice,
we find that the correlation surface for two statistics, sych as
the median and arithmetic mean, is normal and satisfies (87),
then it is reasonable to assume that the more efficient of the

1“On the Mathematical Foundations of Theoretical Statistics,” Philosophical
Transactions, Series A, Vol. 222, pp. 30y-368, 1922.
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two is a sufficient statistic and perhaps also the most efficient
statistic that can be used. It should be noted that under the
given conditions the more efficient of the two statistics has the
smaller standard deviation and hence is the better one to use
in detecting a change of parameter.

We have already seen that the distribution of medians for
samples of size » = 4 from a normal universe is symmetrical
and not so very different from normal, whereas the distribution
of arithmetic means is normal in this case. It is interesting to
see, therefore, whether or not the arithmetic mean is not only
better than the median for detecting a shift AX but really the
best statistic that can be used.

Fig. 95 shows the observed scatter diagram of correlation
between medians and means for samples of four. In this case
the observed efficiency K and correlation coefficient 7 are

E = o.80

r = 0.899,
and (87) is practically satisficd. Since we know of no statistic

whose standard deviation falls off more rapidly than :/1-_4_,

n
we may conclude that the arithmetic mean is the best statistic
to be used for detecting a shift AX, subject to the conditions
stated above.

We are not in a place to prove that the average is the best
statistic when the distribution function (58) is not normal.
However, since we do not know of a better statistic than the
arithmetic mean to detect a shift of AX when the universe
differs from normality by no more than it usually does in prac-
tice, we shall always make use of the arithmetic mean for this
purpose.

It is of interest to note that the efficiency E of the median
in respect to the arithmetic mean for samples of # drawn from
a normal universe decreases asymptotically with increase in
sample size from 100 per cent for # = 2 to 63 per cent when
n is large, as indicated in Fig. g6. The point for # = 4 is that
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observed for the 1,000 samples of four. This curve shows that
for large samples the efficiency of the median is such that it
contains only about 63 per cent of the information in respect
to the change AX; in other words, that the average of a sample

| ° f
A
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F16. 95.—ScaTTEr DiacraM oF CORRELATION BETWEEN MEDIANS AND MEANS.
of size n = 63 will detect in” the long run a shift AX as often
as the median of a sample of # = 100.

Max. 4+ Min.
— Y — " asa
ol

-

If, instead of the median, we use the

statistic, we have seen that the efficiency is 100 per cent for
samples of two and about 88 per cent for samples of four.
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By making use of some of the recent work of Tippett,! E. S.
Pearson, and N. K. Adyanthaya? we may show that the

Max. + Min.
2

efficiency of the falls off as indicated in Fig. g6.

This curve is in striking contrast to that for medians.

The concept of efficiency here used is different from that
introduced in Part IV, and is perhaps the more usual one.
It is simply the ratio of the sample sizes of two different
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consistent statistics required to give the same standard
deviation.

Consider for example the arithmetic mean X and median M
of a sample of #n. The standard deviation of X in samples of #
drawn from a normal universe with standard deviation ¢ is
o/v/n and for medians M, the standard deviation is ¢(n)o,

! “On the Fxtreme Individuals and the Range of Samples Taken from a Normal
Population,” Biometrika, Vol. XVII, December, 1925.
?Egon S Pearson and N. K. Adyanthiya, *“The Distribution of Frequency Con-

stants in Small Samples from Symmetrical Populations,” Biometrika, Vol. XX~-A,
PP. 356-360.
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where ¢(7) is some function of » which approaches 1.253/4/n
as # becomes large.

Choose a particular sample size zx for the median and find
the sample size nx for the arithmetic mean required to give
the same standard deviation as that of the median for the
chosen sample size. This requires merely the solution of the
equation

g
i T c(m)o
for #g. In fact
T

ny =
Y By

and thereforc by definition the efficiency of the median for the
chosen value of #a 1s
. ony 1
E="" = — .
Hpr o nyc=(y)

The trouble with this value of efficiency for small values of
n is that it depends upon the fact that the value of #x was
chosen first. Thus if we assign to zy the same value #u, and
solve for the new value 2’y we should come out with the same
value of E, if the efficiency for small samples is to have the
same interpretation as for large samples. However, if we solve
for 1’y from the equation

d ’
—-_ = c(n' )0,
V Har

. Mar . . .
and then take the ratio £ = #, it will be found to be different,
178873

in general, from the value of E computed above.

In other words, this means that for small samples we get
one curve of efficiency by assigning to zax an increasing
sequence 7y, 72, . . . and a different curve of efficiency when ng
is assigned the same series of values.

For this reason the curves of Fig. g6 should not be con-
sidered as exact but as merely indicating, in a general way, how
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Max. + Min.

the efficiency of the median or ——————— falls off with in-

3]

creasing sample size.

4. Choice of Statistic to Detect Change in Standard Deviation

Suppose now that we consider the problem of determining
the statistic which will detect a change only in the standard
deviation of the effects of the cause system. Let us start, as in
the previous paragraph, with the case where the universe of
effects (58) is normal. Naturally, we may use any one of several
infinite sets of estimates of o as a means for detecting a change
Ac. Thus, for example,

(e oi? 1‘<’+ I), (88)
\/”1rf v '\/1r

where x = X — X, and i = (1,2,3,...). For a given value
of i, we can write
= Jmy,

where 4 is a constant for a particular 7. Obviously, the ith
moment m; of the absolute values of the deviations in a sample
from the observed average X of a sample can be used as an
estimate of ¢ in samples of size # = 0. In other words, the
statistic
1
0 = (bm;)*
may be used as an estimate of o if the sample size is sufficiently
large.
In general, the distribution function fo(0, #) of any statistic
O is not symmetrical; hence the expected value © is not o.

This situation is represented schematically in Iig. 97. For
samples of a given size #, there is'some constant ¢ by which to

divide © so that the expected value of —.i- becomes equal to ©.

(] . . .
Hence ~ may be used as an estimate of © or in this case of o;

it is called a consistent estimate.
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In a similar way we may make use of either a symmetrical
or an asymmetrical range as an estimate of o. For example,
we have already considered the distribution of 1,000 observed
ranges in samples of four drawn from a normal universe. The
statistics for these distributions were given in Table 34. Since
these ranges are measured in terms of the standard deviation
of the universe, the empirical factors for estimating o are those

\

™~

fo (e,n)

RELATIVE FREQUENCY

6 6 0
STATISTIC ©

Fic. g7.—ScuemaTic AsymMmETRIcAL DisTRIBUTION OF A StATISTIC.
given in Table 41. Now, as in the discussion of Fig. 97, if ©
represents the expected value of the distribution of any range

T 0.
0, the expected valuc of the distribution of —is © or the sta-
¢

tistic © of an infinitc sample or of the universe. Of course,

TanLe 41.- -Emriricar Facrors ror EsTIMATING o

Range . N =N [ 4-X | X—X | X — X,
Empirical Facror for Estimation . 2 0044 o 7863 o 6338 o 7752

this statement rests on the assumption that © is measured in
units of © as in Table 41. The second row of this table gives
the empirically determined factors with which to transform the
observed ranges into consistent estimates of o. It will be noted
that we use © as a statistic of an infinite universe. If © is
also a parameter in the equation of control (58), as it usually is,
then there is some parameter X numerically equal to ©.
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Enough has been said to show that there is an indefinitely
large number of ways in which to estimate 0. Which one shall
we choose as being the most likely to detect a change Ac?

Let us start with a comparison of the standard and the mean
deviation as a basis for estimating o. In Part IV we saw that
the expected value for small samples is not equal to o for either
of these statistics, the situation being that characterized by
Fig. 97. Hence, before we can use either statistic as an estimate
of @, we must know the correction factor for transforming the
statistic into one for which the expected value will be 6. Such
correction factors are given in Table 29 for the standard devi-
ation o of the sample and a similar table could be given for the
mean deviation.

Of course these factors approach unity as the sample size
becomes large. If we also assume that the distributions of these
two statistics approach normality as the sample size # becomes
large, we can make use of the same reasoning as that given in
Paragraph 3 to show that ¢ is the better estimate since the mean
deviation estimate is only 88 per cent efficient.

When the sample size is small, these two estimates have
more nearly the same efficiency. This situation is shown in
Fig. 98. The question arises as to whether or not the standard
deviation o 1s the most cfficient statistic for estimating o from
a small sample, assuming that it is the most efficient for a large
sample. The only available method for doing this 1s to apply
the test of (87) which is strictly applicable only when the
correlation between the two estimates is normal, which condi-
tion 1s, as we know, not fulfilled in this case. The experimental
results for the 1,000 samples of four are shown in I'ig. gg9. The
correlation coefficient 7 in this case 1s 0.895, whereas the effi-
ciency of the estimate 1.1547 ; as compared with the estimate
1.25330 Is practically 100 per cent. We are, therefore, uncertain
from this test whether or not the standard deviation is the most
efficient estimate although we see from Fig. 98 that even for
small samples it is more efficient than the mean deviation. The
difference is negligible, of course, for comparatively small
samples.
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It will be of interest now to consider the efficiency of the
range between the maximum and minimum values of a sample
as an estimate of 6. Again making use of the work of Tippett,!
E. S. Pearson, and N. K. Adyanthiya,? we get the range effi-
ciency curve shown also in Fig. 98. The very rapid decrease in
efficiency of the estimate derived from the range is striking.
The same concept of efficiency is used here as was used in
Paragraph 3. We have here an added difficulty in that the
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root mean square deviation, 4/7/2 mean deviation, and the
range are not cven consistent estimates of o, For this reason
the curves of Fig. 98 are supposed merely to indicate, in a
general way, how the efficiencies of the above two statistics fall
off with increasing #. .

It should be noted that, in our discussion of the importance
of choosing the most efficient statistic for detecting a thange
AX or Ao, we tacitly assumed that the distribution functions
of the statistics compared were symmetrical and of the

1 Loc. cit.
2 Loc. cit.
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same functional form. This is a very important requirement
for, in general, the most efficient statistic in the sense of being
the one with the smallest standard deviation need not be the
statistic most likely to catch a given change in X or ¢. For
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example, the comparison of the four ranges of Table 41 for
detecting a given change Ag involves the algebraic magnitude
of Ac, and the knowledge of the functional forms of the distri-
bution of the different ranges. The same could be said of the
comparison of the statistics based upon the moments m; of the
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absolute values of the deviation. To make such a comparison
is certainly not practicable at the present time.

It appears, therefore, that there is good reason to choose
the standard deviation ¢ of the sample as a basis for the es-
timate of the standard deviation o of the universe to detect
a change Ao.

5. Additional Reason for Choosing the Average X and Standard

Deviation o

We are now in a place to consider an additional and very
important reason for choosing the average X of a sample to
detect a change AX and the standard deviation ¢ to detect a
change As. The previous discussion has been limited to the
assumption that the universe or distribution (§8) of standard
quality is normal.

In Part IV, however, we saw that, no matter what the nature
of the distribution function (58) of the quality is, the distri-
bution function of the arithmetic mean approaches normality
rapidly with increase in #, and in all cases the expected value
of means of samples of # is the same as the expected value X
of the universe. Hence the arithmetic mean is usable for de-
tecting a change AX almost equally well for any universe of
cffects which we are likely to meet in practice. It appears that
the same cannot be said of any other known statistic.

We also saw in Part IV that, although the distribution
function f,(s, #) of the standard deviation ¢ of samples of # is
not known for other than thc normal universe, nevertheless
the moments of the distribution of variance ¢ are known in
terms of the moments of the universe. Hence we can always

establish limits
02+ /0,2

within which the observed variance in samples of size # should
I .
fall more than IOO<I - ;) per cent of the total number of times

a sample of 7 is chosen, so long as the quality of product is
controlled in accord with the accepted standard.



290 ECONOMIC CONTROL OF QUALITY

This generality of uscfulness is not shared by any other
known estimate of & or, more specifically, of o2

6. Choice of Statistic to Detect Change Ar in the Correlation
Cocfficicnt t

In the present state of our knowledge of the distribution of
product moments, the only available basis for detecting a
change Ar is the distribution function (75) of the correlation
cocflicient in samples of size .

7. Choice of Method of Using Stalistics

ITaving chosen statistics with which to detect variability
from standard quality, it remains for us to choose the way of

SUCCESSIVE SAMPLES OF n

I1e. 10oo. SivpLe Form or Conrron Chari.

using them. We shall illusrrarc_rhis point by a discussion of
the ways of using the average X" and standard deviation ¢ of
samples of size 7.

Making use of the control limits "

9 -+ 30’(,‘

we may construct a control chart such as shown in Iig. 100.
The occurrence of a value of 0 outside these limits 1s taken as
an indication of a significant variation from standard quality
or as an indication of trouble.
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Instead of using this simple form of chart for each of several
statistics, we may use a chart based upon the probability of
the simultaneous occurrence of the different statistics. Two
possible forms of such charts for two statistics ©; and . are
shown in Fig. 101. In Fig. 101-2 the occurrence of a sample
for which the point (01, 62) falls outside the shaded area is
taken as an indication of trouble, the boundary of this area
having been chosen so that the probability P of falling within
the boundary is economic. Similarly, in Fig. 101-4, the prob-
ability P of falling inside the dotted limits on either side of the

o, ]
CY) ®

Fic. 101.—Two ‘T'vricar Forms oF ConiroL CHART.

curve of regression represented by the solid curve is economic.
Such a test is often referred to as the doublet test.

To construct a chart of the type of Fig. 101-@ requires the
knowledge of the distribution function fe,, 6,(61, 6, #) of the
two statistics O; and ©.. For the averages and standard
deviations of samples from a normal universe this function
rapidly approaches normality as we see from a study of the
distribution functions of X and ¢ of Part IV. Hence we can
set up correlation ellipses correspondlng to a desired probability
P. In genera] however, little is known about the distribution
function of pairs of statistics, even for the arithmetic mean and
standard deviation, for samples from other than a normal
universe.
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The work of Neyman already referred to in Chapter XIV of
Part IV makes possible the construction of a chart of the form
of Fig. 101-4 for averages and variances of samples from any
known universe. This theory also makes it possible to establish
approximate limits for pairs of averages and standard devia-
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tions. Fig. 102, for example, shows such sets of limits for
samples of # = 4, n = 100, and # = 1000. This figure is of
particular interest in that it indicates that such a test may be
more sensitive to a change in the functional form f of the uni-
verse when the sample is small than when it is large. In other
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words, such a chart can be made sensitive to changes in the
function representing standard quality, even though the average
X and standard deviation ¢ of the universe remain constant.

8. Choice of Method of Using Statistics—Simple Example

Table 42 gives forty observed values of tensile strength of
steel strand in pounds per square inch (psi). Let us assume

TaBLE 42.—TENSILE STRENGTH OF S1EEL STRAND

Company No. 1 Company No. 2
12,600 13,800 14,300 14,550
13,750 14,250 13,900 14,250
13,440 13,370 14,460 13,390
13,960 13,510 14,480 14,130
13,570 13,110 14,170 13,910
13,550 13,400 13,610 13,180
13,570 13,860 13,990 13,790
13,430 13,440 14,140 13,810
13,250 13,900 13,400 13,260
13,320 13,910 14,240 14,550

that the accepted standard quality for the tensile strength of
this particular product is normally distributed with

X = 13,540 psi,
and

g

440 psi.

Is there any indication that the quality of product of either
supplier is significantly different from standard quality in the
sense that the observed samples may not be considered as
random samples from standard quality? In what follows, we
shall describe three different ways of using the statistics X and o
to answer this question.

A. One way is to construct control charts for averages and
standard deviations of samples of twenty with the following
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limits. Of course, @ is 440c2 where the value of ¢; is that given
in Table 29 for n = 20:

e o 440 13,245
X+3— =13,840+ 35— =
3\/” 354 3\/20 {13,835’
and
- o 440 214
g —= = 42 —_— = .
£33 /5, = 483 {()32
This is done in Fig. 103. Using this method, we assume that
there is an indication of the existence of significant deviations
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F16. 103.—ONE IForm oF Conrrorn CuarT Test.

from standard if the observed values of either average or stand-
ard deviation or both for a given sample fall outside of the
control chart limits.

The observed values of average and standard deviation for
the two samples of twenty are represented by the black dots.
We take the fact that one of the averages falls outside its limits
as an indication of lack of control in respect to standard
quality.
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B. Another way of testing whether or not the two samples
of twenty came from standard quality is to construct a control
chart of the type shown in Fig. 101-4. S'nce for samples of
twenty from a normal universe ! the correlation surface of X
and ¢ is approximately normal, we may construct the ellipse
which should include, let us say, P = 99.73 per cent of the
observed pairs of values of X and ¢. Doing this for the case
in hand, we get the results shown schematically in Fig. 104.
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The fact that one point is outside this ellipse is taken as an
indication of trouble.

C. A third way of testing whether or not the two samples
came from standard quality is to test whether or not the dif-
ferences '

le - X.:l = 428.50,
and
Ia; - azl = 71.28

are likely to have occurred if both samples came from standard

! Cf. Chapter XV, Part IV,
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quality. Obviously a test of this nature comparable with the
previous two is to consider the occurrence of an absolute dif-
ference in averages greater than

o 440
I =377 = 417.4%,

3\/;1 10
2
or in standard deviations greater than
o 440
— = 30— = 29£.16
3\/)1 3\/Q.o 93
as indicative of trouble. Again we get a positive indication.

9. Chaice of Method of Using Statistics—Continued

Let us look at the results obtained by the three different
tests just described. It will be seen that the first test indicates
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trouble when a point (X, o) falls outside the dotted rectangle
in Fig. 105, whereas the second test indicates trouble when a
point falls outside the ellipse. It is easy to see that the two
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tests are inherently different. In the first place the probabilities
associated with the areas of the rectangle and ellipse are 0.9946
and 0.9973 respectively. More important, however, is the fact
that the two tests could not be made to exclude the same region
even if the areas were equal.

Now the third test is basically different from the other two
in that it indicates trouble when either the distance @ or 4 ex-
ceeds certain limits.

Since, as in the simple illustration of the previous paragraph,
experience indicates that the three tests so often give consistent
results, since the third test is obviously very difficult to apply
when we have many samples of size #, and since the second
test is more difficult to apply than the first although it gives
approximately the same results, the first test appears to be the
practical choice.

10. Choice of Statistic for Detecting Change in Universe of Effects

Let us consider next the problem of detecting a variation
from standard quality represented by a change of cause system
from one which gives standard quality, say

dy = f(A’, X]’ X‘), “ ey Xi, .« e ey x,n’)dX’ (58)

to one which gives something different from standard and
represented by some unknown distribution of the form

dy = f] (‘Xv, X,l) )‘lzv L) x,”:v LECEEES ) xI7'7v")dX"

Perhaps the single statistic most sensitive to a change of
this type is the x? function. Subject to the limitations set forth
in Part IV, we may divide the original distribution into any
number of cells and calculate x? for samples of size n grouped
into the chosen cells. A conttol chart for x2 may then be con-
structed by making use of the known values of X? and 0,2 In
general, it is desirable to use a grouping which gives as nearly
as possible equal probabilities for all cells. One difficulty is
that the x2 contro] chart can only be used for comparatively
large samples.
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11. Detection of Failure to Maintain Standard Quality

Thus far we have considered the comparatively simple
problem of detecting a change of a given kind and amount in
the effects of a constant cause system, such as a change AX in
expected value or a change Ac in the standard deviation of the
effects of the cause system, everything else remaining fixed. In
practice, however, we never know that the quality has changed
from standard in a specific way. What we do is to take a sample
of 7 to determine whether or not the product has changed. It
may or may not have changed one or many times within the
period in which the sample of # is being taken. Our success
in detecting trouble in such a case depends among other things
upon the way in which the sample is taken, or, more specifically,
upon whether or not the sample of # comes from one or more
constant systems of causes.

For example, in testing whether or not the tensile strength
of strand, Table 42, had been controlled in accord with standard
quality, we divided the data into two groups of twenty obser-
vations, one group from cach of the two suppliers. Of course
we could have tested in a similar way the hypothesis that the
forty observations came from a standard production process.
Thus, the control limits in pounds per square inch (psi) on
average X and standard deviation ¢ of samples of forty from
product of standard quality are respectively:

13,331
13,749

O
13,540 = 3—\474-;—) = {
4

440 _ 284
432 = 3\/;6 l58°

The fact that the observed average of the forty values of tensile
strength falls outside the control limits would be taken as
evidence of lack of control. Hence, no matter which test had
been applied in this case, the result would have been the same.
It may easily be shown, however, that the results of two such
tests may not be the same. That is to say, if trouble does exist
in that the product as tested by a sample of #» comes from two
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constant systems of causes in the sense that »; pieces come
from a cause system with constants

X, and o,

and . pieces come from another system with constants

X: and o,

it is possible that a test for trouble using the total sample »
may or may not give an indication of trouble. The same is
true of the test based upon the use of the samples #; and n,.
Furthermore, one test may be positive and the other negative.

Therefore it might appear that it makes little difference
how a set of # data representing lack of standard control is
grouped before applying the test for detecting trouble of this
kind. In other words, this would mean that an inspector trying
to detect variation from standard quality would be able to do
so equally well irrespective of whether or not he was able to
divide the data in a sample of size # into subgroups corre-
sponding to different constant systems of causes. To draw
such a conclusion would be utterly misleading and against what
is perhaps the most generally accepted step in the scientific
method, that is, classification. Assuming for the moment, how-
ever, that in the long run a test using the whole group of #
data as a unit is just as likely to detect trouble as one using the
subgroups of data obtained by accurate classification, there still
would be a definite advantage in classifying the data before
applying the test. Obviously, the ultimate object is not only
to detect trouble but also to find it, and such discovery natu-
rally involves classification. The engineer who is successful in
dividing his data initially into rational subgroups based upon
rational hypotheses is therefore inherently better off in the
long run than the one who is not thus successful.

For such an engineer the statistical tests described in this
chapter constitute a powerful tool in testing his hypotheses
and in determining the extent to which an investigation must
be carried in order to check beyond reasonable doubt whether
or not a given hypothesis is justified.
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Suppose, for example, that an engineer wishes to determine
how large a sample is required to detect variation from standard
quality by an amount AX in the expected value, where it is
assumed that the functional form f and all other parameters
remain the same. It is a simple matter to show that the
required sample size # is given by the solution of the equation

< v

AX = 21—, 89-a

7 (89-a)

where ¢ is generally taken as three for reasons already set forth.

In a similar way one finds that the number required to

detect a change only in standard deviation and of an amount
Ac 1s given by the solution of

AT = 2 \E (89-&)

For example, the size of sample determined from (89-2) is
such that the probability of detecting trouble of the nature of
a change only in X and of an amount AX is approximately
0.99 if £ = 3. We can go even further and say that with this
sample size the probability of detecting trouble in the form of
a change only in X is greater than 0.9 if the shift is greater
than AX used in (89-a).

A similar interpretation may be given to the value of #
derived from (89-4).

Thus we see how statistical theory becomes a useful tool
after we have taken the scientific step of classification of data
into rational subgroups. Moreover we see that, even though
classification is not as it should be, statistical tests often indicate
the presence of trouble. Of course, these advantages are
attained with a knowledge that we shall not look for trouble
when it does not exist more than a certain known fraction
(1 — P) of the total number of times that a sample of size # is
observed.



CHAPTER XX
Dertecrion oF Lack or ConNTrOL

1. The Problem

In the previous chapter we considered the comparatively
simple problem of detecting lack of control in respect to an
accepted standard distribution. Now we shall consider the
problem of detecting lack of control in the sense of lack of
constancy in the unknown cause system. To make clear the
inherent difference in these two problems, let us consider once
more the data on tensile strength of strand as given in Table 42.
The three tests of the previous chapter merely served to in-
dicate whether or not it is likely that the data came from a
specified constant causc system. The corresponding question
to be considered now is whether or not they come from some
constant cause system of unknown functional form f, unknown
average X, and unknown standard deviation o.

The tests of the previous chapter made use of assumed
known values of X and ¢. The corresponding tests which we
can use in this chapter must involve estimates X and o, say, of
the unknown average X and standard deviation ¢ of the objec-
tive but unknown distribution representing the condition of
control, if it be controlled.

Two criteria to guide us in making the estimates X and o are:

A. The estimates X and o used as a basis for detecting
lack of control must be such that, if the quality from which
the sample of size # is drawn is controlled with an average X
and a standard deviation ¢, then the following two statistical
limits should be fulfilled:

Ls X=X
n— ®
- (90)
Lsa‘=0' 90
n— ®

J01



302 ECONOMIC CONTROL OF QUALITY

B. Insofar as p0531blc the estimates should be chosen so
that, if the quality is not controlled, the estimates X and o
actually used shall be those which will be most likely to indicate
the presence of trouble or, in this case, lack of constancy in
the cause system.

2. Choice of Method of Estimating X and o

Let us start by considering estimates X and ¢ in psi derived
from the data of Table 42 in two diffcrent ways as follows:

(@) Let

40

¥ x;
Aa = 40' = 1355/05075,
and
10 -
y AYEYE
o= g = 442.20.
4o
() Let
10
> AV
X = = 300355
o 3758
and
P o +o:2
o= ; T = 400.46,

where o1 and o2 are the standard deviations of the first and
second groups of twenty obscrved values and where ¢, is the
factor given in Column 3 of Table 29.

Obviously the condition (go) is satisfied by the estimates (a)
and (4). It may easily be shown, ‘however, that if the sub-
groups are rational, then the estimate ¢ of type (8) is on the
average less than the corresponding estimate of type (a).

Therefore, under these conditions criteria involving the use
of estimates (4) will in the long run detect trouble more
often than similar criteria involving estimates (4). Hence it is
reasonable to choose method (4) for estimating X and o.
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3. Choice of Test Criterion for Detecting Lack of Control

Having chosen a pair of estimates X and ¢, we may use them
in any criterion in which we may use X and 6. As an illus-
tration let us apply the three criteria of the previous chapter,
making use of X and ¢ calculated as in (). The results of the
application of the first two criteria are shown graphically in
Fig. 106. Obviously both of these criteria give a negative
indication of lack of control. Comparing Fig. 105 with Fig. 106

T

- )

o

o
T

STANDARD DEVIATION O

1 1
13,400 13,600 13,800 14,000 14,200
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Fi6. 106.—TEs1s ror CoNirOL,

we see that, whereas one point is out of limits in Fig. 108,
neither point is out in Fig. 106. 'This is interpreted as meaning
that, although the observed data are consistent with the
assumption of the existence of a controlled state upon the basis
of the criteria used, the equation of control is likely not the
accepted standard used in the previous chaprer.

Now since the difference 428.50 psi in averages exceeds

3—== = 379.9 psi, the third test criterion gives indication of
ﬁa
lack of control.
As previously explained, this is the kind of situation which
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often arises in which the indications of two criteria are not
the same. Our decision in such a case involves the use of
judgment. In this particular instance and for reasons outlined
in the previous chapter, we choose the first type of control
chart test corresponding to the rectangular limits of Fig. 106.

With the above discussion as an introduction, we shall now
describe criteria which have been found to work successfully in
the detection of lack of control.

4. Criterion I—General

Given a set of # data to determine whether or not they
came from a constant system of causes, we take the following
steps:

A. Divide the # data into m rational subgroups! of i, u,,
vy Wiy ..., nn values each.

B. For each statistic to be used, use estimates 6 and oo
satisfying as nearly as possible conditions «/ and B of Para-
graph 1.

C. Construct control charts with limits

6:!: 306
for each statistic.

D. 1f an observed point falls outside the limits of this chart,
take this fact as an indication of trouble or lack of control.

5. Criterion I—Attributes
In this case we make use of a control chart with limits
b £ 3op
where p is the fraction defective in the total sct of # observations
and -
a'p = \'il,rq’
n

where 7 is the average sample size. The lower limit is taken as
zero if p — 3op < O.

*Notc in Fig. 55 the difficulties encountered if the data are not divided into
rational subgroups.
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Example: Carrying out these computations for the Type A
data of Table 1, we get the following results:

n
Month P = - Month p= o Month =
n n n
January o 0076 | May 0 o301 September 0 0048
February o o2 | June. 0 oobo | October .| o 0280
March o o117 | July o 0076 November o oll2
April . o ooso | August 0 0051 | December 0 005y

_ Enl

P = 5 = 0.010g,
-1

ap = p—q = 0.0047,
H
P+ 30p = 0.0250,
p —30p = — 0.0032 (hence taken to be 0.0000).

With this information we get the control chart of Fig. 4-a.
The fact that points fall outside the limits was taken as in-
dicating the presence of assignable causes of variability, at least
some of which were later discovered, thus justifying the indi-
cation of trouble given by the test.

6. Criterion I—F ariables— Large Samples

Given a series of # observed values X1, X, ..., X5y ...,
Xn divisible into m rational subgroups of my, msy . ..y 1y ...,
nm values each, we make use of control charts with limits

X+ 30z and o=+ 30,

where X is the average of the » observed values and

v = \/{11012+n2022+. e e+ .+ Hmom® (91)
m+ne+...+mm+...+nm
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ai being the standard deviation of the ith rational subgroup. If
the sizes of the subgroups are practically equal, we have

a

and 7
ov=—- and o, = — —=.
' \/'n ° \/zﬁ

If the sizes of the subgroups are not equal, the limits for a given
subgroup 7 must be made to depend upon the sample size #; for
that group.

Obviously, the condition that the statistical limit

Lio=0
n—w

is not satisfied when 7; is small. It seems reasonable to believe
in the light of our previous discussion of the distribution func-
tion of the standard deviation that, so long as the minimum size
of a subgroup does not fall below, let us say, twenty-five, the
estimate o given by (91) approximately satisfies this limit con-
dition.

If the rational subgroups contain a large number of observa-
tions, we may also make use of control charts for the skewness &
and flatness Bo.

Example 1: Table 43 gives the observed frequency distri-
butions and the control limits for the twelve monthly records
of quality shown previously in Fig. 19. Iig. 107 shows the
results in graphical form. The fact that some of the points fell
outside controi limits was taken as an indication of lack of
control for which the assignable causes were later discovered.

Example 2: Let us apply Criterion I to the data of Fig. 21
to determine whether or not there is any indication that the
depth of penetration for the seven treating plants is controlled.
The requisite computations are given in Table 44.

In this case the sample sizes are too small to justify the use
of £ and B: and the sizes differ so much among themselves that
it is necessary to use variable limits as shown in Fig. 108. Lack
of control, the causes of which were later discovered, is indicated
by both the averages and correlation coefficients.
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Example 3: As a third example, let us apply Criterion I to
a set of data which may reasonably be assumed to be controlled
and see if the result of the test is consistent. For this purpose,
we may make use of the four observed distributions of 1,000
given in Table 23. Since these data were obtained under con-
ditions as nearly controlled as we may reasonably hope to
attain, all observed points should fall within the limits. Fig. 109
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Fic. 107.—Contror Cuaris tor Daia of Fi. 19 anv TaBLe 43,
InpicaTing Lack oF ConTrol.

shows that they do. The positive indication of control is con-
sistent with the facts as we believe them to be. Of course, as
previously noted, a few points should fall outside control limits
in the long run even though there is no lack of control.

7. Criterion I—F ariables—Small Samples

Given a series X1, Xz, . . . , Xi, . . . , Xn of 7 observed values
of X that may be divided into m rational subgroups of equal
size, control charts with limits

X+ 30z and 7= 30,
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constitute what we shall term the Criterion I test for small

samples, where ~ _  _ - -
X1+ Xo+.. A+ Xi+ ...+ X

X =
m
. gy+o2+...+0+ ... +aom
a - —_—— = e e
_ m
ag
g = .
e

In these expressions ¢; is the factor given in Table 29, X; is
the average, and o; the standard deviation of the ith subgroup.
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’

Example 1: The problem to be considered first is one pre-
viously reported in the literature.! It is to determine whether
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or not the tensile strength in psi of a given alloy as produced
by five different companies is controlled where five tests on as
many pieces of product from each of five companies gave the
following results in pounds per square inch:

Companies

c D G /4 ‘ N
Average X. .. . . .| 29314 24,660 28,210 31,488 34,332
Standard Deviation o 1,148 2,434 528 1,243 1,006

The details of the method of calculating the control limits
are shown below:

29,31 24,660 4+ 28,210 1,988 2
9,314 + 24,600 + 5 + 31,9506 + 34,33 = 29,701

1,198 4+ 2,434 + 528 + 1,243 4+ 1,006
S

X =

Qi
]
I

S
©
o
-t
o

A 1,281._8_
°X T /1 0.84301\/s

X + 307 = 31,747

X — 3og = 27,655

= 682

I _ 1,281.8 _
caVan  0.8407V 10

7+ 300 = 2,728

482

o — 300 = — 164 (taken as zero)

The corresponding control char'ts,' Fig. 110, indicate lack of
control or significant differences between the tensile strengths
of this alloy manufactured by the different suppliers.

Example 2: Let us next consider the set of two hundred and
four measurements of insulation resistance previously given in
Table 2 of Part I. In this case there was no basis for dividing
the data into rational subgroups other than that it is reasonable
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to believe that the cause system may have changed in the course
of taking the measurements. Accordingly we divided the data
into groups of four, starting with the first four and continuing
in the order in which they were taken. The control chart for
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b
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F16. 110.—CoNTROL CHART FOR SMALL SaMPLEs SHOWING Lack or ConTroL.

averages shown in Fig. 7-2 and that for standard deviations
shown in Fig. 111 indicate lack of control. As was pointed out
in Part I the causes for lack of control were found and removed.

The reader may question why the original data were grouped
into subsamples of four instead of some other number. A little
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Fic. 111.—ConTroL CHART FOR Sranparp DEviarioNs or SamrreEs oF Four—
Data or TaBLE 2.

’

consideration will show that there is nothing sacred about the
number four although there are several reasons why it may be
the most satisfactory when there is no @ priori knowledge to
Justify any other sample size.
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Obviously, if the cause system is changing, the sample size
should be as small as possible so that the averages of samples
do not mask the changes. In fact single observations would
be the most sensitive to such changes. Why then do we not
use a sample size of unity? The answer is that if we do, we are
faced with the difficulty of choosing the standard deviation to
be used in the control charts. Of course, we might use the
standard deviation ¢ of the entire group of observations but,
in doing so, we would find that ¢ = 465.21, a value distinctly

larger than that of 5‘-.— = 328.26. A little consideration will

2

show that, in general, this condition will occur in the long run
whenever the cause system is not constant in respect to the

expected value X, although the expected values of ¢ and z
C2

are equal when there is no change in the cause system. Thus
the test in which we would use the standard deviation ¢ of the
whole group of 7 observations is not so sensitive, in general,
as the one proposed in which we divide the data into small sub-
groups in the order in which they were taken. In fact, the
sensitivity of the test will increase, in general, with decrease
in subsample size until the size of the sample is such that the
data in any given subgroup come from a constant system of
chance causes. In the absence of any a priori information
making it possible to divide the data into rational subgroups,
there would be some advantage therefore in reducing the sub-
sample size to unity. To do so, however, would obviously
defeat our purpose since we could not then obtain an estimate ¢
to use in the control charts. Hence we must choose some sub-
sample size greater than unity. Sizes 2 and 3 offer some dif-
ficulties in the way of computation of o and so we go to a sample
of four.

Now we are in a position to see how important it is to record
the data in the order in which they were taken when we have
no a priori basis for dividing the data into rational subgroups.
If this is not done, there would obviously be no sense in trying
to apply Criterion 1.
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8. Use of Criterion I—Some Comments

In the practical application of Criterion I, particularly in
the case of small samples, certain questions arise. One of
these is: How many subgroups of four must we have before
we are justified in using Criterion 1? That this question is
important 1s at once apparent because the expected probability
of a statistic falling within the ranges established by Criterion I
approaches the economic limiting value only as the total
number # of observations approaches infinity. This difference
in expected probability, however, even for two subsamples of
four is likely less than 0.02 and certainly less than 0.05. Hence,
the effect in the long run of using Criterion 1 when the total
number of observations is small is to indicate lack of control
falsely on an average of perhaps five times in 100 trials instead
of three times in, let us say, 1,000 trials which it would do when
the total number # is large. In almost every instance we can
well afford to take this added precaution against overlooking
trouble when the total number of observations is small. It
appears reasonable, therefore, that the criterion may be used
even when we have only two subsamples of size not less than
four. In this case, of course, we may wish to apply additional
tests although, as we have already scen in the earlier part of
this chapter, such tests will perhaps in the majority of cases
give consistent results.! The principal thing to be kept in mind
is, however, that the main purpose of such a criterion is to
detect lack of control in a continuous production process where
we have a whole series of samples so that the question as to the
minimum number of subsamples becomes of minor importance.

We may also ask how the indications of Criterion 1 depend

1In work not yet published, I. W. Winters has investigated the efficiency of this
criterion for the case of small samples from two normal subgroups, assuming that the
data have been divided objectively.  In‘other words, he has determined the probability
that the use of Criterion | with a given sample size will detect a difference of a given
amount in the averages of two objective subgroups. For example, he has shown that
the cfficiency varies all the way from 4 per cent for a sample of four and an objective
difference of e (the common standard deviation of the objective subgroups) to 97 per
cent for a sample of twenty and an objective difference of 2e. On the other hand the
probability that this Criterion will lead us to look for trouble needlessly is, under the
first condition, .0085, and under the second, .0oo14.
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upon the universe from which the sample is drawn, especially
in the case of small samples. It will have been observed that
the factor ¢; used in setting limits for standard deviation is
based upon the assumption that the samples are drawn from
a normal universe whereas, in general, we know that this con-
dition is not rigorously fulfilled. Furthermore, we have seen
that the distribution function of both the average X and stand-
ard deviation ¢ of samples of a given size depends upon the
nature of the universe. Hence, the probability associated with
the limits in the control charts for the average X and standard
deviation o depends upon the universes from which the samples
were drawn.

Of course, the distribution of averages, even for samples of
four, is approximately normal independent of the universe so
that the probabilities associated with control charts for averages
are closely comparable irrespective of the nature of the uni-
verses. This is not true, however, in respect to the distribution
of standard deviations.

We may get around this difficulty partly by usxng the control
chart for the expected variance of the universe smce, as we have
seen, the expected value is related to the variance of the
universe in a known manner. This makes it possible to establish
the base line of the control chart for variance—something which
cannot be done for the standard deviation unless the functional
form of the universe is known. On the other hand, the stand-
ard deviation of the variance involves the flatness B2 of the
universe and hence cannot be estimated with great accuracy
in most practical cascs.

Under these conditions, it seems reasonable to believe
that comparatively little can be gained in most cases by making
use of the variance instead of the standard deviation. In this
connection, it is of interest to cite a typical instance of the way
in which the control chart method, making use of averages and
standard deviations for small samples, gives indications con-
sistent with facts when we apply the test to samples of four
drawn from either of the three types of universes previously
described. For example, Fig. 112 shows the results of the test
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applied to twenty-five samples of four from each of the three
experimental universes. In each case all of the points are within
the limits as we should expect them to be under the controlled
conditions supposed to exist in drawing these samples. The
results of the test are obviously consistent with the facts
assumed & priori to be true in this particular instance.

9. Criterion IT

We shall close this chapter with a description of another
criterion and illustrate its use by application to the 204 data
of Table 2. Having the data divided into m subgroups of size 7,

we calculate the ratio Iaidl as indicated in the data sheet of
Table 45. If the ratio is greater than three, this fact is taken
to indicate lack of control. We shall call this test Criterion I1.

This test provides a means of judging the nature of the
conditions under which the sampling has been done. Thus,
if all samples are produced by the same constant system of
causes, or, in other words, if the sampling has been done in
what we term Bernoulli fashion, then the expected value of 4
1s zero. If; however, conditions change between each observa-
tion of a subgroup but the same set of changes occur in the
process of obtaining each subgroup of observations, then the
expected valuc of 4 is greater than zero, and in such cases the
sampling 1is said to be done in Poisson fashion. Or again, if
conditions remain constant for any subgroup of observations
but change in any one of a finite number of ways from subgroup
to subgroup, then the expected value of 7 1s less than zero and
the sampling is said to be done in Lexian fashion.

However, even though the sampling is actually done in
Bernoulli fashion, the observed ‘value of 4 may be positive,
zero, or negative due to sampling fluctuations. Hence, we must
have some way of judging when the deviations of 4 from zero
are sufficiently great to indicate either a Poisson or a Lexian
selection of samples.

The standard deviation of 4 based upon Bernoulli sampling
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TaBLE 45.—Data SHEET ror Critirion II—Dara oF TaBLE 2

|4]

Calculation of —

Number of observations N = 204
Size of subgroup » = 4
Number of subgroups m = g1

Sample Average X, 7.2 Variance . 2
Number of Sumple o of Sample
1 4,430 0000 19,624,900 0000 149,512 §000
2 4,372 §000 149,118,756 2500 7,606 2500
3 3,827 5000 14,049,756 2500 17,656 2500
51 §,100 0000 26,010,000 (000 11,250 0000
x 220,407 0000 1,038,119,072 0700 4,832,876 1050
Av. 4498 1705 20,356,275 9229 | 94,762 2766
I
]
”
e
opt = - \F = 20,355,275.9229 — (4,498 1765)*
X m
O.T? - 121,()84_35&
m
Y o.2
or =1 o 62 2966
m T -
no - m
=- - g?— mrTi’ =— 770,122 4810
n -1 m— 1 - ——

- / ':(r;n — 1) o " . 107 608

d = — - R < = 24, ol
\ m(m — 1) — 1) \nw—1 i hio7 297

M _ 370,122 481_0

~ =12 71
[} 29,107 6083 RIVALY)

provides such a measure of significance. The formula for
od was obtained upon the assumption that the samples had
been drawn from a normal universe, in which case o2 and o352
are uncorrelated. If the universe is not normal, this formula
for g4 will not necessarily give the correct result, although from
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the viewpoint of detecting lack of control this simply means
4]
2
from g9 per cent, or, in other words, we may on the average
look for trouble a little more often or a little less often than
one time in a hundred when it actually does not exist.

that the probability that will exceed 3 differs somewhat



CHAPTER XXI
DEetecTioN oF Lack or CoNTROL—CONTINUED

1. Introductory Statement

In the previous chapter we considered the problem of
detecting lack of constancy of a cause system or the presence
of an assignable cause of Type I. In this chapter we shall
consider the problem of detecting the presence of a predomi-
nating cause or group of causes forming a part of a constant
system. Such a cause will be referred to as an assignable cause
of Type II. In the latter part of this chapter we shall consider
what is perhaps the only available method for detecting the
presence of assignable causes when the data are such that
they cannot be grouped into rational subgroups and when no
information is available other than the observed distribution.

Assuming that the variable X satisfies the equation (58)
of control, how can we detect the presence of a predominating
cause or group of causes’ As a basis for our consideration of
this question, let us return to the picture of a constant system
of chance causes presented in Part ITI. There we assume that
such a system is composed of, let us say, m ultimate independent
causes

Cl,Cz,...,Cz',...,Cm,

producing effects which compound linearly. It will be recalled
that we do not presume to be able to describe any one of these
m causes. The most that we can usually hope to do is to put
our fingers on some secondary cause made up of several of the
independent contributing causes.
To make this point clear, let us think of the unknown group
321
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of m causes of error in some physical measurement such as
that of the coefficient of expansion of a steel rod. Some of
the secondary or macroscopic causes of error would be temper-
ature fluctuations, non-homogenous heating of the rod, etc.
Such a cause obviously includes a group of the elementary
causes. We may represent this situation schematically as
follows:

Ci, Coy ..., | Ci, Citr, Civn, ..., Cing|, ..., Cmu

Macroscopic Cause Y

With this picture in mind, two methods of detecting the
presence of an assignable group of causes suggest themselves.
They are the well-known Method of Concomitant Variation
and the Method of Differences of elementary logic. The first
method is to vary the cause Y and see if we get an accompanying
change in the resultant effect of the cause system. The other
method is to remove the cause Y and observe whether or not
the resultant effect is modified.

In the general case where X is a chance or statistical variable
subject to sampling fluctuation, the effect either of varying the
cause Y or of removing this cause must be shown to be sig-
nificant in the sense of being greater than can reasonably be
attributed to sampling fluctuations in the variable X.

It should be noted that both of these methods require that
the analyst be successful in choosing the macroscopic cause
which is findable in the objective sense. Hence, in the appli-
cation of such a test, one must make full use of his powers of
imagination, supposition, idealization, comparison and analogy
in the utilization of all available data.

2. Criterion 111

Let us assume that we are to discover whether or not there
is an assignable or predominating cause of variability in a
variable X satisfying the equation of control, namely,

dy = f(X, )q, )sg, ey ki, ey an’)d_Y. (58)
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The application of Criterion 11T involves three steps:

(4) Pick out some controlled variable Y which may or may
not be an assignable cause of Type I1.

(B) Obtain # simultaneously observed pairs of values X1Y7,
X.Ys, ..., Xi¥i, ..., XnYn and determine the cor-
relation coefficient 7.

(C) If r lies outside the limits

ot ey

Vi —1
take this fact as an indication that Y is an assignable
causc.

If the correlation between Y and X is normal, we see that
Criterion IIT indicates that there is a significant degree of
commonness of causation or, in other words, that the observed
correlation coefficient 7 is greater than can reasonably be
attributed to sampling fluctuations where, as before, we choose
sampling limits corresponding to three times the standard
deviation of the statistic used in measuring the fluctuations.
Since, as we have scen in Part 111, there is reason to believe
that the correlation between two controlled variables is at least
approximately normal, we may assume that the positive in-
dication of Criterion 1 is indicative of a significant degree of
commonness of causation between the two variables, and to
this extent ¥ may be considered to be in most cases an assign-
able cause.

From what has been said about the sampling fluctuations
of the correlation coefficient, it is obvious that, if small samples
are to be used, it is preferable to state the test in terms of the
variable = given by (77). If z, as given by this equation, lies
outside the range .

Ok — i,
V=3 ,
the criterion is said to give a positive indication that Y is an
assignable cause in the sense of our present discussion. So long
as the sample size 7 does not exceed twenty-five, it is perhaps
better to use the 2 transformation.
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Example 1: We shall consider a case in which it is very
desirable to control the hardness of a particular kind of appa-
ratus. In this instance, each piece of apparatus consisted of
two parts welded together, the materials for the two parts
coming from different sources. Table 46 gives the hardness
measurements on each of the two parts for fifty-nine pieces of
this apparatus. Is there any evidence of the existence of an
assignable group of causes of variability in hardness?

TaBLE 46.—HARDNESs MEASUREMENTS oN WELDED Paris

Hardness Hardness I Hardness
Sample Sample Sample | .
J J 3

Number Part 1 | Part 2 Number Part 1 | Part 2 Number Part 1 | Part
! 509 | 443 21 487 | 368 41 479 | 367
2 44 8 | 207 22 449|367 42 458 1 353
3 516 | 395 23 46 8 | 371 43 479 | 355§
4 438 | 193 24 496 | 378 44 45 8 | 351
S 490 | 432 25 5t4] 3358 45 49 1 | 332
6 454 | 26 9 26 458 | 375 46 oo | 361
7 449 | 345 27 48 5| 383 47 473 | 359
8 490 | 374 28 46 2 | 307 48 469 | 352
9 34| 381 29 495|339 49 491 | 3871
10 48 ¢ 330 i §o 9 39 6 50 48 2 359
11 46 o 26 31 476 ] 369 51 46 9 | 33 8
12 490 | 354 32 450 1 37§ 52 490 | 376
13 43 4 | 362 33 46 6 | 32 4 53 447 | 355
T4 444 | 325 34 480 | 39 8 54 517 | 362
15 46 6 | 31§ 35 44 5| 353 55 452 | 34 4
16 504 | 381 36 4851 383 56 448 | 27 %
17 459 | 352 37 460 | 381 57 424 | 311
18 473 | 334 38 489 | 350 58 48 5| 368
19 466 | 307 39 463 | 349 59 01 | 344
20 473 | 368 40 461 ] 329

Now the only common source of causation was the heat
treatment given the apparatus after the two parts were welded
together. Hence the variability in the heat treatment might
be an assignable cause. If it is, we should expect to find that
the correlation coefficient » between the hardness measurements
in Table 46 is significant in terms of Criterion III.
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Applying the test we find that the observed correlation
r = 0.5§13 lies outside the limits

3
V59 —1

Hence we conclude that the heat treatment constitutes an
assignable cause of variability in the hardness of the finished
product. This conclusion has since been justified by further
studies.

O+

3. Criterion IV

Let us assume, as before, that the variable X satisfies the
equation (§8) of control. The application of Criterion IV
involves the following steps:

(A) Obtain » observations X1, X, ..., Xj, ..., Xn of the
variable X and calculate some statistic ©;; for this set of »
observed values.

(B) Choose some variable Y which may or may not be an
assignable cause and obtain # values of the variable X under a
condition where it is known that the variable ¥ can in no way
influence the variability in X. Making use of this new series
of # observed values, determine the value of the statistic 6; and
let us call this value 6;..

©) If

|0i1 = Oiz | > 300,- 0

we take this fact as an indication that ¥ was an assignable
cause.

For reasons which we have already considered, it i1s usually
sufficient to make use of the two statistics, average and stand-
ard deviation, in terms of which we say that Y is an assignable
cause if either of the following inequalities is satisfied:

| X3 - X2 | > 3\/;; (017 4 a2%)

|1 —o2] > 3\/&(#’ + a22),
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Example: Fig. 113 shows the cross-sectional view of a com-
mon type carbon transmitter. It is but natural to expect that
the physical properties, such as resistance, efficiency, etc., of

0=0,
o=0,
VARIATIONS INTRODUCED VARIATIONS INTRODUCED
BY PIECEPARTS BY CARBON

THREE CAUSES, OR GROUPS OF CAUSES, OF VARIATION

THIS DISTRIBUTION OF PRODUCT TRANSNITTERS IS, AS WE WOULD EXPECT,
A SIMPLE COMBINATION OF THE THREE CAUSES OF VARIATION

P, 1y,

this kind of instrument should be sensitive to slight variations
in such factors as granular carbon, the clasticity, density, etc.,
of the piece-parts,and the dctails of assembly, such as tightness,
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with which the screws are set and the care with which the
respective parts are centered.

It is of interest to see how much influence each one of these
three factors exerts upon the general varijability of the qualities
of the completed instrument. The method for investigating
the influence of each factor immediately suggests itself—it is
the use of Criterion 1V.

To apply this method we must eliminate the influence of
all but one of the factors and study the resulting distribution
of quality attributable to the remaining factor or constant
system of chance causes. The results of such a study on one
quality characteristic gave the three distributions shown in
Ifig. 113, the standard deviations of which were a1 for piece-
parts, o3 for assembly, and o3 for carbon.

If ¢ represents the standard deviation in quality of the
completed instrument in a sample of # and

0124 = standard deviation in samples of » when piece-part
variations are climinated,

0213 = standard deviation in samples of # when assembly vari-
ations are climinated, and

o312 = standard deviation in samples of # when carbon varia-
tions are eliminated,

then the application of Criterion 1V to standard deviations
states that piece-parts, assembly and carbon represent assign-
able groups of causes 1f

I
lo— o123 3\/“)1 (o7 + o7%1.23),

og— 021y > 3\/2; (0% + 0%2.13),
and
l )
l c— 012 I > ‘}‘\/”" (0° -+ 075.12).
In this case it was found that each of these three inequalities

was satisfied and hence we conclude that all three factors
actually represent assignable cause groups of variation.
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Furthermore, since the valuc of ¢ is approximately given by
Vol + a2% + a3,

we conclude that these three groups operate independently
and contribute practically the entire amount of variability
observed in the completed instrument.

4. Criterion V
Oftentimes the observed data are given in a form such that
no one of the four previously described criteria can be used.

3,000 @ OBSERVED DISTRIBUTION
( = SECOND APPROXIMATION

2,500}

2,000

1,500}

1,000

NUMBER OF INSTRUMENTS

500}

oL

? 8 9 10 1 12 13 14 15
EFFICIENCY

Fic. 114.—Is There ANy Inpication ofF Lack or Coniror? Crirerion V
ANSWERs: “YEs.”

As a specific illustration we may consider the observed fre-
quency distribution of efficicncy of 7,686 picces of one kind of
apparatus represented by the black dots in Fig. 114. Is there
any indication of lack of control?

The instruments in this group. had come to the central
testing laboratory from eight different shops. The measure-
ments when submitted for analysis, however, had been grouped
together, giving the frequency distribution of Iig. 114 and the
fourth column of the upper half of Table 47.

The method of detecting lack of control in this case is as
follows:
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A. Calculate the average X, the standard deviation ¢, and
the skewness 4 from the # observations and use these in the

expression !
‘| . x2
1 kix 123\ | ~55
o
o 0’\/ 2m| 2\o 30

to calculate the theoretical frequencies yoi, vee, - - ., yom for
the m cell intervals into which the original data have been
grouped, it being understood that x = X — X.

B. Calculate

o3 iz e
=1 Yo

C. Read from the curves 2 of Fig. 73 the probability P of
obtaining a value of x? as large as or larger than that observed,
where the number of degrees of freedom is taken as four less
than the number m of cells.

D. If the probability P is less than o.001, take this fact as
an indication of lack of control.

Example 1: The details of the application of this criterion
to the data of Fig. 114 are shown above in the data sheet of
Table 47. Tt will be noted that Sheppard’s corrections are used
in this case. The smooth solid curve of Fig. 114 appears to fit
the observed points very well indeed. However, Criterion V
detects what the eye does not see. In accordance with the con-
ditions of Criterion V, we conclude upon the basis of its appli-
cation that the quality of this product was not controlled.

Although the observations originally presented were grouped
together without reference to the shops from which they came,
it later became possible to subdivide the data upon this basis.
Definite evidence of lack of constancy of the cause system
was thus revealed by the control chart of Fig. 115, and the
assignable causes of variability were found. In other words,
the indication of Criterion V was correct. ‘

1This is the second approximation already referred to in Parts I and IT1. The
theoretical frequencies may be calculated with the aid of Tables A and B.

2 More extensive tables of P(x2) are given by K. Pearson in his Tables for Stat-
isticians and Biometricians.
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Example 2: In the development of methods of preserving
telephone poles, it is of interest to know the distribution of
thickness of sapwood to be expected for poles of a given kind
and to know whether or not this quality of poles is controlled.
Early in this study a set of 1,528 measurements of depth of
sapwood on as many chestnut poles became available, although
at that time it was not possible to divide this set of data into
rational subgroups.

3r
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Fis. 115.—Furmer Evibence oF Lack or Conrron ror Dara orf Fie. 114.

The observed and theoretical distributions of depth of
sapwood are shown by the black dots and the smooth curve of
Fig. 116. The probability P of obtaining a value of x? as large
as or larger than that observed is much less than o.co1. Hence
a search for assignable causes was begun and the following
three were found:

(a) The men who made the measurements favored even
numbers.

(4) The thickness of sapwood was determined from borings,
and no allowance was made for shrinkage of these during the
time that the measurements were being taken.

(¢) The expected thickness of sapwood was found to depend
upon whether the poles had come from one or the other of the
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approximation curve than may be attributed to sampling
fluctuations?

In Part III it was shown that there is no such known neces-
sary and sufficient condition for control. However, it was
shown that, for a very wide range of constant systems of chance
causes, the second approximation is approached as we approach
the theoretical conditions of maximum control although no fre-
quency function is a sufficient, even though it be a necessary,
condition for maximum control unless it be known & priori
that the chance cause system is constant.

Now let us consider the use made of the Chi Square test
in this criterion. Let us assume for the sake of argument
that it is necessary and suflicient to show that the distribution
function is the second approximation in order to show that the
cause system Is free from assignable causes. In this case can
we rely upon the Chi Square test to detect the presence of
assignable causes when the theoretical distribution is calculated
from the sccond approximation using estimates of the three
paramcters derived from the observed data?

We have seen how the Chi Square test works when the dis-
tribution function is known a priori, both as to functional form
and the values of the parameters. The question now to be
considered is: How will it work, if we know & priori the func-
tional form but not the parameters?

To make the problem specific, let us consider the four dis-
tributions of 1,000 observations each from the normal universe
previously used to illustrate the use of the Chi Square test
when the true distribution yi, y2, ..., ¥, ..., ym into m
cells is known a priori. Now, however, let us calculate
theoretical distributions for each of the four samples of 1,000
by using the observed values of the averages and standard
deviations in the normal function. Table 48 gives the four
distributions derived in this way together with the calculated
values of x?, using a thirteen-cell grouping.

It is of interest to compare the observed values of x2 in
Table 48 with those previously calculated for the same four
samples of 1,000 making use of the @ priori known distribution,
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Table 36. These two sets of values are shown in columns 2
and 3 of Table 49. The average x2 in the third column is

TaBLE 49.—OBSERVED VALUES OF x?

Chi Square Probability
Sample Theoretical Distribution
Number /!’Prmrx Theoretical /:1 Priori
Known Distribution Known
Distribution Distribution | 12 !)egrecs 10 Degrees
of Freedom | of Freedom
1 6 741 6 612 o 873 o 880 o 760
2 10 716 8 694 0§54 o 728 o 562
3 4 455 3 360 o y72 © 991 0.969
4 9 174 6 146 o 688 o o8 o 8o2
Average. . 7 772 6 203 o 772 o 877 o 773

definitely less than that in the second, and the average prob-
ability calculated for the values of x? from the theoretical
frequencies is 0.877 as compared with the average of 0.772 cor-
responding to the chi squares computed from the known a priori
frequencies.

A little consideration shows that in the calculation of x2
from theoretical frequencies, we must make allowance for the
fact that estimates of parameters are used instead of true values.
We see that, when the @ priori cell frequencies yi, yo, .. .,
Vi, - - -, ym are known, the only restriction on the observable
cell frequencies yi, y2, . . ., ¥4y . . ., ym is that

Nn+yz+...+y+...+ym=n

In other words, the set of m variables (yi — yi), (¢ = 1,2,...,m),
has m — 1 degrees of freedom. Obviously, however, the set of
m variables (yi — yei) has m — 3 degrees of freedom because we
have three conditions imposed upon the possible cell frequen-

cies, viz., Syi = n
2yiXi = nkX,
Syi(Xi - X)? = no.
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When we make allowance for the loss of three degrees of freedom
instead of one, we get the probabilities in the sixth column of
Table 49, the average of which is 0.773 as compared with the
corresponding average o.772 for the values of x? calculated
from the @ priori known cell frequencies. This close check
should strengthen our faith in the usefulness of the x? test
when the functional form is known a priori and the parameters
are estimated from the data.

We must consider briefly certain other characteristics of the
Chi Square test. Obviously the total number of observations
must be large before we can apply the test, particularly when
the parameters in the frequency function must be estimated
from the observed data. In quality control work we seldom
try to use Criterion V unless the sample size # is at least 1,000.
When the sample size is very large, it becomes important that
the method of estimating the parameters in the theoretical
frequency distribution is such that the statistical limit

1
(Y.—}’e») =0

Ls -
n—y w0 /2

is satisfied. Otherwise the observed value of x2 as # is increased
indefinitely will always approach infinity even though the
quality is controlled in accord with the assumed functional dis-
tribution. Enough has been said to indicate the nature of some
of the limitations to be placed upon the use of the Chi Square
test involved in Criterion V.

Thus we see that Criterion V is a far less satisfactory test
than Criterion I where the latter can be applied. We see that
Criterion V in practice will usually give indication of the
presence of assignable causes even though the product is con-
trolled, unless the objective distribution is rigorously given by
the second approximation. The criterion likely errs on the side
of indicating trouble when it does not exist, although this is
not a serious handicap in most industries until the state of
control has been practically reached. By such time a producer
will generally have set up his inspection practices so that his
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data are divided into rational subgroups and Criterion I may

be applied.
6. Role of Fudgment in Choice of Criteria

Even though, in general, an engineer need not go beyond
the use of the five criteria previously described, certain excep-
tions may arise. Such a case is shown in Fig. 119 in which we
have a control chart for averages of samples of four supposed
to have been drawn from a normal universe in the order plotted.
Would you conclude that the cause system is constant because
Criterion I is satisfied? Almost anyone will answer this
question in the negative. The probability of getting from a
controlled system twenty-five samples with averages decreasing
from sample to sample is so exceedingly small compared with
the probability of getting twenty-five samples not so ordered
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Itc. 119.—A CASE WHERE JUDGMENT Is REQUIRED,

as to suggest the presence of an assignable cause or trend.
Here is a case then where common sense suggests the use of a
criterion other than one of the five.

As another example of a situation requiring judgment in the
use of criteria, let us consider again the distribution of successes
in 4,096 throws of twelve dice where the throw of a 1, 2, or 3
is to be considered a success. A manufacturer of these dice
might reasonably have wished to produce dice which are not
biased. In such a case the distribution of successes, Column 2
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of Table 5o, should not differ from that given by the successive
terms of the point binomial, 4,096 (3 + 4)'* by more than may
be attributed to sampling fluctuations. Would he conclude
that the discrepancy between the theoretical and observed dis-
tributions indicates bias? To answer this question he might

TasLE §0.—DoEs THE DisckEpaNcy BETWEEN THEORETICAL AND
OnserveEp DisiriBution Inpicare Bias?

Number Theoretical Number Theoretical
Observed . Observed .
of Frequenc Frequency of Frequency Frequency

Successes quency 4096(3+5)2||  Successes 1 4096 (54+3)1

[} o ! 7 847 792

1 7 12 8 536 49§

2 6o 60 9 267 220

3 198 220 10 71 66

4 430 49§ 11 1 12

5 731 792 1 o !

6 948 924

apply Criterion V. Doing so, he would get a probability of fit
of 0.0015. Since this probability exceeds the value o.001 set as
a limit in the statement of Criterion V, he would be supposed
to conclude that the product was controlled in the sense that it
did not show a significant bias from the a priori standard.

If, however, we compare the graph of the smooth curve
through the frequencies determined from the binomial expan-
sion, Fig. 120, with the observed values, we see that the smooth
curve appears to be shifted to the left.

Instead of using Criterion V, we might have compared the
observed fraction p = 0.512 of success with the expected value
0.500 upon the basis of the assumption of no bias. We might
take the occurrence of a valuc of p outside the range 0.500 + 30p,
where op is the standard deviation of p in samples of size #, as
being significant. In this case

Op = = 0.0148,
1,000
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Hence this test indicates control as did Criterion V, because
the observed value p = o.512 is well within the limits of
0.500 = 3(0.0158). Thus both tests indicate control.

It is left as an exercise for the reader to calculate the theo-
retical distribution upon the assumption that the dice were
biased so that the probability of success is the observed value
o.s12. He will find that the probability of fit is thus remarkably

tooor ® OBSERVED DISTRIBUTION
[ ] )IZ
— +
900 4096 (E %
eog{

7001

600

FREQUENCY

Il 1 L 1 I 1

1 1
0 2 3 4 5 6 7 8 9 10 12 13
NUMBER OF SUCCESSES

Fic. 120.—THE Fact tHaT THE SMooTH THEOREricAL CURVE APPEARS TO BE
Su1rrep To THE LEFr Sucaests Lack oF ControL EVEN 1HoucH CriTERION V
Gives Negative TEst.

improved, and that the differences between observed and cor-
responding theoretical cell frequencies show a mixture of signs
as they should. In this case he will find that the observed
results are more likely on the assumption of bias than on that
of no bias. Most likely his judgment will lead him to accept
the hypothesis that the dice are biased.
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7. Sampling Inspection in Relation to Control— Attributes

We are now in a position to consider the significance of
control in relation to sampling inspection designed to give the
consumer certain assurance in respect to the quality of product
which he receives.

The consumer, in general ignorant of the production process,
naturally wants some protection against accepting a bad lot of
product. Of course, the ideal situation would be to inspect
the entire lot and thus make absolutely certain of its quality.
This, however, is often a too costly procedure. Hence the
consumer is willing to compromise and use sampling inspection
provided it is not likely that the quality of the sample will
indicate that the lot is good when, in reality, it contains more
defects than he is willing to tolerate. Two such sampling
methods for protecting the consumer will now be discussed.

A. A Priori Method: The essential element in this method
is that, if a lot containing the tolerance number of defective
pieces is submitted for inspection, the chance that it will be
accepted on the basis of a random sample is a given value P,
whereas if the lot contains more than the tolerance number of
defective pieces, the probability that it will be accepted on the
same basis is less than P.

For example, let us assume that a lot of IV pieces of product
is to be inspected and that the number ¢ of defective pieces
found in a sample of # is to be made the basis of acceptance or
rejection of the lot. The consumer is perhaps willing to accept
a certain amount of defective material provided the number of
such pieces thus accepted does not exceed some fixed per-
centage of the lot, commonly known as the tolerance pi. In
fact we shall assume that, if a tolerance lot,—one containing
PN defective pieces—is submjitted for inspection the consumer
wishes to have some assurance that he will accept only a fraction
P of such lots in the long run. This fraction P has beer called
the consumer’s risk and it is merely the probability that a
tolerance lot will be accepted upon the basis of the sample.!

1 This risk is discussed in an article by H. F. Dodge and H. G. Romig, “A Method
of Sampling Inspection,” Bell System Tecknical Fournal, October, 1929.
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It remains merely to specify the sample size # and acceptance
number ¢ in such a way that the probability of finding this
number or less of defective pieces in the sample taken from a
tolerance lot is a given value P.

Mathematically these factors are related by the following
equation:

P= Cq.N + C«.N .m!v + Cq.N de\ ot C;:zl—\’c C:'N], (92)

CNI n—2

where Cj means the number of combinations of 7 things taken j
ata time and ¢¢ = 1 — pr. Having assigned P a definite value,
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Fic. 121.-—~Consumnr’s Risk.

say o.10, it is then possible to find pairs of values of # and ¢
which satisfy (92).

To illustrate the meaning of the consumer’s risk, let us
consider the following simple case. N = 100, # = 50, pr =
5 per cent, ¢ = 1, ¢ = g5 per cent. The consumer’s risk is
then the probability of finding 1 or o defective pieces in the
sample of fifty taken from the lot of one hundred containing
five defective pieces. Substitutinlg the necessary values in (92),
we find P = o.1811, which is equal to the sum of the first two
ordinates of Fig. 121.

B. A Posteriori Method: This method also offers the con-
sumer a certain protection against accepting bad lots, i.e., those
containing the tolerance number or more of defective pieces.
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The essential point of difference between this and the method
just described is that the present method ! attempts to find the
probability that a lot contains more than X defective pieces if
¢ defective pieces are found in a random sample of #. A little
consideration will show that this kind of risk is quite different
from the consumer’s risk previously described and that the
nature of the assumption that must be made before this risk
can be given is quite different from that made in the @ priori
method.

Specifically, it is necessary to assume the a priori existence
probability distribution of lots of a given size IV in respect to
the number of defective picces contained therein. Having made
this assumption, it is then possible to calculate the probability
that each of the possible lots would have given the sample.
The a posteriori probability that the lot contains just M de-
fective pieces is then the ratio of the probability that a lot of
size N containing M defective pieces existed and caused the
sample to the sum of the probabilities that lots containing o,
I, 2, ..., N defective pieces existed and caused the sample.
It follows from this that the @ posteriori probability that the
lot contains more than A defective pieces is the sum of a series
of the above ratios found by allowing the number of defective
pieces in the lot to vary from M + 1 to N inclusive.

To illustrate this method, consider again the above example
and let us find the a posteriori probability that the lot of one
hundred pieces contains more than the tolerance number of
defective pieces, assuming that the sample shows only one
defective picce. As a very simple @ priori assumption we shall
assume that all possible constitutions of lots are equally prob-
able, i.e., the probabilities of the existence of lots containing
0, 1,2,..., 100 defective pieces are all equal to v§v. Then
the existence probability distribution of possible lots is that
shown graphically in Fig. 122-4 and given in Column 2 of
Table 51 as existence probabilities ao, ey « .., @i, ..., an.

1 This method of sampling 1s discussed in an article by Paul P. Coggins “Some
General Results of Flementary Sampling Theory,” Bell System Technical Fournal,
January, 1928.
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The next step 1s to calculate the probability that each of the
possible lots could have given the observed sample. These
are the productive probabilities Bo, B1,. .+, Biy- . . , By shown
in Fig. 122-4 and Column 3 of Table §1. At this stage we should

TaBLE §1.—CALCULATION OF @ posteriori PROBABILITY

() () ) (4)
Number A priori A priori | .4 posteriori
Defective Existence | Productive } Probability

in Lot Probability | Probability aB,

M; a, B };:_ﬂ:

o 1/101 o) o)

1 1/101 O 500000 0 262475
2 1/101 O 505051 0 255026
3 1/101 o 378788 o 191269
4 1/101 0 249922 o 126198
5 1/101 0 152947 0 077231
6 1/101 o o88870 0.044875
7 1/101 o 049635 0.025063
8 1,101 o 026838 0.013553
9 1101 O oI4112 © 007120

10 1 101 o0 007237 0 003654

11 1 101 0 003627 o o011

12 1,101 o 001778 o 000898

13 1/101 0 0008454 O 000431

14 1/101 0 000402 © 000203

15 1/101 0 000184 0 000093

16 1/101 0 000084 O 000042

17 1,/101 © 000037 0 00001y

18 1/101 o 000016 0 000008

19 1/101 o 000008 O 000004

20 1/101 0 000003 0 000002

21 1/101 O 000001 © 000001

*22 1/101 O 000000 0 000000

® Probabilities in columns (3) and (4) for M 2 22 do not affect the sixth place of decimals.

note that certain of the B’s are necessarily zero,—lots of one
hundred containing less than one defective piece or more than
fifty-one defective pieces could not have produced the sample.
For g’s corresponding to number of defects lying between these
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limits, the probability aifi that a lot containing just i defective
pieces existed and caused the sample is
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The a posteriori probability that the lot contains just 7 defective
pieces 1s

ailbi

N

_2 By

These probabilities are shown in Column 4 of Table 51. Hence,
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for the given special case, the a posteriori probability Py that
the lot contains more than the tolerance number (five) of
defective pieces is found by summing the probabilities in
Column 4 corresponding to M = 6,7, ..., 100. Thus

100

T aifi

Py = 55— = 0.0978.

2 ais

i=0

Hence P; is the consumer’s assurance that the lot is bad
upon the basis of the given assumption and is represented
graphically by the sum of the ordinates of Fig. 122-¢ from
M = 6 to M = 100.

It is perhaps worthwhile to point out that, if the manu-
facturing process is controlled, the probability that a lot of
N pieces contains the tolerance or more of defective pieces is
known as soon as the equation (§8) of control is known. The
a priori consumer’s risk, however, even under these conditions,
has an additional protective feature in that even among the
proportion of lots which contain the tolerance number of
defective pieces the consumer will accept only a certain fraction
P of them. Among those lots containing more than the toler-
ance number defective, less than the fraction P of them will
be accepted.

If the quality is controlled in the sense that the probability
of the production process producing a defective piece of appa-
ratus is P, it can be shown that the @ posteriori method of deter-
mining the constitution of a lot of product tells us nothing
other than would have been inferred @ priori. In fact, if the
condition just stated is satisfied, it can be shown that the
a posteriori probability that’the lot N contains say ¢ + X
defective pieces, having found ¢ defective pieces in a sample
of n, 1s precisely

C_’\V-_" g¥ Y,
This expression, however, is nothing more than the @ priori
probability that the balance (N — #) of the lot contains just
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X defective pieces and is known as soon as the condition of
control is met.

It is of importance to note that, in order to be able to state
the probability that a lot of NV pieces of a product contains not
more than X defectives after examining a sample of # in which
¢ defective are found, we must assume something about the
constitution of the lot before the sample of # was taken. Now,
as we have seen, we approach the condition where we can say
something about a lot of size N before the sample of size # is
taken as we approach the condition of control.

Hence we see that even from the viewpoint of consumer pro-
tection, it is an advantage to have aiiained as nearly as possible
the condition of control.






Part VII

Quality Control in Practice

A Summary of the Fundamental Principles
Underlying the Theory of Control and an
Outlinc of the Method of Attaining Control of
Quality from Raw Material to Finished Product






CHAPTER XXII
SumMary or IF'UNDAMENTAL PRINCIPLES

1. Introductory Statement

The subject of quality control as considered in the previous
chapters is comparatively new. The theory is based upon
certain statistical concepts—physical properties and physical
laws are both assumed to be statistical in nature.! With the
introduction of statistical theories and statistical laws comes a
need for a new concept of causation.? Our understanding of
the theory of quality control requires that our fundamental
concepts of such things as physical propcrtles, physmal laws,
and causal explanations undergo certain changes, since indus-
trial development rests upon the application of the laws relating
the physical propertics of materials.

The object of industrial research is to estabiish ways and
means of making better and better use of past experience.
Insofar as research continues to reveal certain rules or laws
which exist in the production of the finished product whose
quality characteristics satisfy some human need, we may expect
industry to be interested in research. That industries do have

351
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such an interest in this form of human endeavor seems to be a
well-established fact. It is estimated that during the year 1927
upwards of $200,000,000 was spent in industrial research in
approximately 1,000 laboratories in the United States.! This
gives the order of magnitude of the sum of money that is being
spent annually in the effort to find out how to do something
tomorrow that we do not know how to do today. All effort,
however, in this direction is obviously not included in formal
research programs. Who, for example, in some way or other
has not made use of past experience?

It is rather startling to see how much progress was made
by that part of the human race which zever had any knowledge
of applied science as such. Long before any one worried over
the physical principles which govern the usc of the lever and
of the wedge, use had been made of both of these mechanical
devices. Long before any one had arrived at the generalization
known as the Law of the Conservation of Energy, our fore-
fathers had transformed mechanical energy into heat energy to
start their fires. These two illustrations are sufficient to indicate
that progress in the use of past experience does not depend
upon the knowledge of scientific laws as we know them today.
The rate of progress on the other hand does depend upon this
knowledge. In a similar way, we do not have to know the
theory of control to make progress in the improvement of
quality of product. But, as the physical sciences have led to
useful generalizations which increase the rate of progress, so
also does the knowledge of the principles of control.

To indicate the relationship which the theory of control
bears to exact science, it is interesting to consider six stages
in the development of better ways and means of making use of
past experience. They are:

1. Belief that the future cannot be predicted in terms of
the past.
2. Belief that the future is pre-ordained.

! Grondahl, L. O., “The Réle of Physics in Modern Industry,” Science, August 23,
1929, pp. 175-183.
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3- Inefficient use of past experience in the sense that expe-
riences are not systematized into laws.

4. Control within limits.

5. Maximum control.

6. Knowledge of all laws of nature—exact science.

It is conceivable that some time man will have a knowledge
of all the laws of nature so that he can predict the future quality
of product with absolute certainty. This might be considered
a goal for applied science, but indications today are that it is
not a practical one. Atleast we are a long way from such a goal;
for years to come the engineer must be content with the knowl-
edge of only comparatively few of the many conceivable laws
of nature where we think of the term law in the sense of New-
ton’s Laws of Motion. Furthermore, the engineer is fully
aware of the fact that, whereas it is conceivably possible with
the knowledge of these laws to predict the future quality of
product with absolute certainty, it is not in general feasible to
do so any more than it is feasible to write down the equations
of motion (were it possible to do so) for a thimble full of mol-
ecules of air under normal conditions. The engineer is fully
aware that, whereas in the laboratory one may often be able
to hold conditions sufficiently constant that the action of a
single law may be observed with high precision, this same
degree of constancy cannot in general be maintained under
what appear today to be necessary conditions of commercial
production. In fact, if we are to believe, as do many of the
leaders of scientific thought today, that possibly the only kind
of objective constancy in this world is of a statistical nature,
then it follows that the complete realization of the sixth stage
is not merely a long way off but impossible.!

We have seen that the principle of control plays an im-
portant role in laboratory research in what is ordinarily termed
pure science. We have seen that it is necessary, in general, in
all such work to attain as nearly as possible to certainty in the

! Bridgman, P. W., loc. cit,
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assurance that the observations supposed to have been taken
under the same essential conditions have actually been taken
in this way. As an efficient tool in testing whether or not this
condition has been satisfied, we have the criteria of Part VI.
We have seen that the criteria for maximum control (Part I1I)
give a test which indicates the limit to which it is reasonable
that research may go in revealing causes of variability in a set
of observations presumably taken under a constant system of
chance causes. We have also seen that many of the quantities
with which we actually deal in the so-called exact sciences are
but averages of statistical distributions assumed to be given by
what we have chosen to term a constant system of chance
causes.

Let us now consider the need for control as an integral
part of any industrial program. In most cases we can dis-
tinguish five more or less distinct steps in such a program.
They are:

1. A study of the results of research to provide principles
and numerical data upon which to base a design.

2. The application of such information in the construction
of an ideal piece of apparatus designed to satisfy some human
want, where no attention is given to the cost.

3. Production of tool-made samples under supposedly com-
mercial conditions.

4. Test of tool-made samples and specification of quality
requirements that can presumably be met under commercial
conditions.

5. Development of production methods.

From this viewpoint the results of design, development, and
production are grounded on the initial results of research.
What is more important in our present study is the fact that
often causes of variability enter in the last four steps which
by the very nature of the problem are not experienced in the
research laboratory. For example, we have the possibility of
assignable causes entering through different sources of material,
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the human element, and variable conditions which affect the
production process.

One possible method of obtaining satisfactory quality under
such conditions is to make wherever possible 100 per cent in-
spection of the product at the time it is ready for delivery. In
many cases, however, this cannot be done because of the
destructive nature of the tests; in any case the cost of inspection
must be considered. Furthermore, if indications of the presence
of assignable causes of variability are discovered in the quality
of final product, it is not easy to locatc the causes because the
data of final tests may have been taken long after the causes
have ccased to function. Even more important, as we have seen
in previous chapters, is the fact that the quality may appear
controlled in the end and yet there may be assignable causes of
variability at one or more steps in production. For these
reasons, it seems highly desirable that the measurements
made in each of the last four of the steps mentioned above be
tested to determine whether or not there is any indication of
lack of control. If there is, it may be necessary that a further
study be made in the laboratory to assist in finding the assign-
able causes of variability.

We must emphasize the importance of control in setting
standards for the raw materials that cnter into the production
process. Most physical propertics are subject to the influence
of presumably large numbers of chance causes. Therefore, if
we are to make efficient use of data representing these prop-
erties, the data must have been taken under controlled con-
ditions. Before wc can use experimental results with any
assurance of their giving a controlled product, it is highly
desirable that we make use of tests to determine whether or
not the data have been secured under controlled conditions.

Furthermore, in the development of processes of production,
it should be of advantage to apply tests to detect lack of control
and then to weed out the assignable causes of variability as
they occur, with the assurance of the kind already indicated in
previous chapters, that after this process of weeding out has
once led to a product which appears to be controlled, future
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product will remain in the same state unless obvious assignable
causes of variability enter.

Thus the theory of control plays an important part in the
various stages of applied science. It is desirable that the depart-
ments of design, development, and production keep the labor-
atory research department informed as to evidence of the
existence of assignable causes wherever they arise up to the
time that product goes to the consumer.

The theory is also of value in the study of the life history
of product. Obviously, when equipment goes into the field it
meets many and varied conditions, the influence of which on
the quality of product is not in general known. Such an
example would be the varied conditions under which telephone
poles are placed throughout the United States. .7 priori, it
is reasonable to believe that the life of the pole depends in a
large way upon the service conditions. Among the exceedingly
large number of variables which may influence the life of the
pole, little information is available to indicate the importance
of any one. The value of laboratory rescarch in improving the
quality of a pole through life must take into account ways and
means of preservation suited to each of the various conditions.
Naturally, therefore, it is of interest to know when the vari-
ability in the quality of the material at any stage in life is such
as to indicate the existence of an assignable cause so that
further research may be instituted to find ways and means of
effectively removing this cause. Field engineers, therefore, find
need for analytical methods of detecting evidence of lack of
control in the quality of product at any time as revealed by
life data so that they can call this fact to the attention of the
laboratory staff.

In this chapter we shall discuss briefly such fundamental
concepts as physical property, physical law, and cause, basic
to every step in control.

2. Object of Control

As already stated, the object of control is to enable us fo0 do
what we want to do within economic limits.
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As we have seen in Part I, it is necessary to postulate that
when we have done everything that we can do to eliminate
variability in a quality X, we arrive at a state of statistical
control in which we can say that the probability dy of an
observed value X falling within the range X to X 4+ dX is

given by the equation of control

dy = f(X, M, N, 0L Ny oL, M)A X, (58)

3. Physical Properties

In the previous chapters we have seen that perhaps the
closest that a physical quality attains to constancy is in the
sense that objectively it may be represented by a distribution
function (58) characterizing a state of control. It follows that
the complete specification of any quality requires the estab-
lishment of an equation of control of the form (58) both in
respect to functional form f and the values of the m’ parameters
contained therein. It has been shown in Part V that for most
practical purposes it is sufficient to attempt to specify simply
two characteristics of this distribution, namely, the average or
expected value X and the standard deviation e.

Examples: To emphasize the statistical nature of materials
still often treated as constants, let us look through a microscope
at a cross section of a piece of ordinary steel,! Fig. 123. What
we see is anything but a homogeneous isotropic body. Why
this heterogeneous structure? The answer is—It is produced
by chance or unknown causes.

What is the effect of such irregularities upon the physical
properties of steel when produced in some useful form as,
for example, supporting strand, a piece of which is shown in
Fig. 124? The answer is that a physical property, say the
breaking load of such strand will, if we are able to eliminate
assignable causes of variation, be some distribution function
as indicated in Fig. 125. The smooth curve in this figure
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represents the objective distribution of control (58) for this
particular case, as inferred from the study of observed data.

Fi1G. 124.—PIECE OF SUPPORTING STRAND.

As we have said above, it is usually sufficient to specify merely
the average X and standard deviation o of such a distribution.
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Now let us look at a cross section of another important
structural material,—wood, Fig. 126. This time we do not
need a microscope to see the effects of chance causes upon the
structure of the material.

Fig. 88 in Part V shows roughly what such irregularities do
to the modulus of rupture of four kinds of telephone poles.
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Fra. 125.--TLNsILE SiRENGIR DisirIBUIION roR STRAND SHOWN IN FIG. 124.

Note the wide spreads of these distributions as compared with
their means.

These two illustrations are sufficient to show that the
variation introduced by constant systems of chance causes into

F1c. 126.—Cross Skcrion or PoLE.
.

the physical properties of materials are so large that they need
to be taken into account in the use of these materials.

Shortly we shall see what methods are available in the liter-
ature for establishing objective distributions for standards of
physical properties.
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4. Physical Laws

In Part III we discussed briefly three different kinds of
laws, viz., exact, statistical, and empirical. In this section we
shall contrast the first two kinds in the hope that by so doing
we may take over the part of the concept of exact law that is
common with that of statistical law, and that we may see clearly
wherein the concepts of the two laws differ, insofar as this
bears upon the theory of quality control.

Let us consider first the harmonic oscillation of a vibrating
system characterized by the equation

EX  dX
dt2+k7{7+.rA—o

m
where X is a linear displacement, ¢ is the time, m is the mass,

k is the frictional force proportional to velocity and sX is
the restoring force. The solution of this differential equation

/.\/\/\/\v,\\ft
VA

F16. 127-a.—Basis ror Exact PrebicTION.

DISPLACEMENT — X

gives us the displacement X as a function of the time £ In
other words, starting with a knowledge of m, £, 5, and X at
¢t = o, we can predict with great precision the displacement at
any future time £.  Fig. 127-a typifies such a prediction.

Let us now consider what is involved in prediction in a
statistical sense. Let us contrast with this simple problem
that of predicting the number of times that a head will be
turned up in 7 throws of a penny. As was pointed out in
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Part III, the practical method of making prediction in this
case is to assume that there is some point binomial

@+p"

where q + p = 1 such that the successive terms of this ex-
pansion represent the probabilities of occurrence of o, 1, 2, 3,
... n heads in » throws. It follows that the standard deviation
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op of the relative frequency p of heads in # trials is given by the
relationship _
Tp = \/pq

If p = % it follows from what has already been said that
approximately all of the observed values of p in future trials
should lie within the dotted limits,

pe %,

shown in Fig. 127-5. The dots in this figure indicate the experi-
mental results of throwing a penny two hundred times.

Now let us compare the results in these two cases. Pre-
diction in the first case involves the assumption that the
dynamical system behaves in a way such that when we sub-
stitute measurable values of m, %, and s in the differential
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equation the solution of this equation gives a satisfactory
prediction of the future displacement of the mass. In an
analogous way, as indicated in previous chapters, it appears
that we may expect to find (in the objective sense) a value of
p for a given penny such that when used as indicated above,
we may establish limits such as those given in Fig. 127-4.

The two methods of prediction are alike in that they require
the experimental establishment of certain parameters. They
differ in that one makes use of these parameters in a differential
equation, the other in a binomial expansion. They are alike in
that we do not know & priori that the mathematics used in
either case is the mathematics that should be used.

Now suppose that we were to try to make N dynamical
systems to have as nearly as possiblc the same values for m,
k, and 5. In the same way let us suppose that we take N
pennies that appear to be alike so far as we can determine.
If we were to start oscillation in cach of the N dynamical
systems with the same displacement and observe the resultant
displacement, we would expect that each of the systems would
follow the curve in Fig. 127-a quite accurately. Similarly, if
we were to throw cach of the A coins a large number of times,
we would expect to get something like the three records shown
below, Fig. 128, representing the results of two hundred throws
of each of three different pennies.

The systems arc alike in that the smooth curve in Fig. 127-4
represents what we may expect to get on the average when
we try to duplicate the dynamical systems as nearly as possible
and the straight line p = } in Fig. 127-4 represents the expected
value for a symmetrical coin. In the statistical case, however,
there 1s a certain indeterminatencss as compared with the so-
called exact case. Although wc can say in the statistical case
with considerable assurance that the observed values of p will
lie within certain limits and that these limits will dccrease
proportionately to the square root of 72, we cannot say anything
determinate about the way the observed values will approach
the value p.

In the dynamical case, if # is made indefinitely large, we
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can say that the corresponding value of X will approach the
value zero as a mathematical limit. On the other hand, we
can say in the statistical case that for each of the V pennies,
the observed fraction p in # throws will approach as a statistical
limit the value p. In the first case we can say very definitely
how the displacement will approach the value zero. In the
second case we can say scarcely anything about the way the
value p will approach p.

This fundamental limitation of indefiniteness, however, is
not solely limited to the statistical case when we come to think
of the determination of the parameters which must be found in
either case. In Part III we pointed out that our success in
being able to predict a phenomenon by means of statistical
theory rests ultimately upon the assumption that we can find
the parameters in certain functions through use of a statistical
limit. In a similar way, the values of m, £, and s can only be
obtained in practice through averaging observed values of
these factors taken under presumably the same essential con-
ditions. In other words the objective values of m, k, and s
are in themselves statistical limits.

Strictly speaking, all that we can say in the exact case is
that the probdl)ility of the diqplacemcnt at a given time ¢/
lying within a given range is a certain constant value. Similarly,
we can say in the case of throwing a coin under the same
essential conditions that the probability of observing a given
number of heads in a given number of throws is a constant.
In other words in both instances what we really assume to be
constant is a certain statistical distribution. In both cases
there is the same kind of indeterminateness although it appears
in a slightly diffcrent way.

5. Causal Explanation

We have made much use of the concept of a constant system
of chance causes. It is essential that we consider a little more
carefully the significant difference between causal explanation
as it is usually accepted and causal explanation in the statistical
sense.
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It is customary to think of a cause as being an antecedent
event which is always followed by one or more definite events
or consequents. The antecedent event in such a case is the
cause and the consequents are the effects of the cause. For
example, the presence of a tubercle bacillus in the lungs of a
human individual may produce many different effects, such as
a high temperature, change in composition of blood, loss of
appetite, and so on. Some of these effects, however, may be
produced by other causes. The situation in such a case is
indicated schematically in Fig. 129, in which .7 and B are ante-

ANTECEDENT A ANTECEDENT B

[ d e f g
CONSEQUENT

I16. 129.— Scuematic or CausaL RELATIONSHIP.

cedents with corresponding consequents indicated by small
letters.

If we can state in a given case all of the consequents be-
longing to a given antecedent event, it is generally agreed that
we may go with certainty from effect to cause. Of course in
the practical case we meet with the serious difficulty of not
being able to state all of the consequents corresponding to a
given antecedent. This point, however, we do not care to con-
sider at present.

The point that we do wish to make is this. Causal explan-
ation in this accepted sense assumes that whenéver we have
an antecedent .4 such as indicated above, it is always followed
by effects (consequents) 4, 4, ¢, ¢, and f. With this picture of
cause let us now contrast the concept of chance cause already



366 ECONOMIC CONTROL OF QUALITY

illustrated in some detail in Part IIT and Appendix I. Imme-
diately we note a characteristic difference between the concept
of a chance cause and the older concept of cause. For example,
in our discussion of Appendix I we treat of very simple systems
composed of m different causes. It is assumed that each cause
may be followed by one or the other of two events, that is one
or the other of two different values of X. In other words, it
appears that we can never hope to tie up a chance cause with
a given event because for each chance cause more than one
event is always possible.

et us go a little further in the amplification of this point.
I.et us suppose that we have » observed values

Arl, 1\’2, c ey .X'i, s hay _\’n,

of some variable quality X taken under controlled conditions
represented by the equation of control (58). We may think of
the cause of this sample as being the particular equation of
control representing the conditions under which the samples
were drawn. It is apparent, however, that in gencral any series
of n observed values such as indicated above may have come
from any one of let us say NV different universes which we may
characterize as follows:

d_\’] = f[ (‘\—, )\“, )\1_?, e e ay )\.,,, c e ey )\1”1’1) (14\-,
dy: = f2 (X, Nery Mooy ooy Magy ooy Aowyy) 4,

(93)
lI{Vj = f_] (-\” )‘jlv )‘jl!y e vy x‘/ln “e ey x,]'"’;) d‘\') 93

L ]

({.‘v‘v = f)\'('\" x.\ Iy X‘\'Q, A ) x\'iv ey x.\ Illl,\-) 11’.\'.

Under the above condition we may never state with cer-
tainty what one of the NV universes the observed sample came
from. Each of the NV universes is a possible cause but our
interpretation of a sample must always be indgfinite in that
under the above conditions we can never be certain as to the
origin of that sample. Cause in the older scientific sense, there-
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fore, has a certain determinateness about it which must of
necessity be absent in the statistical case.

The two kinds of cause, however, do have this much in
common that is very important from the viewpoint of the
theory of control—the choice of a cause in a given case largely
depends upon the intuitive faculty of the human mind. In
other words, we cannot in general write down rules for the
correct selection of a cause. It is, however, one of the objects
of logic to lay down ways and means of testing postulated
causal explanations.

An interesting illustration may be drawn from the field of
investigation as to the origin of the planets. Two fundamental
rival hypotheses are described in a popular way in a compar-
atively recent article by I. R. Moulton.! The first of these
he describes as follows:

Laplace started with a heated gaseous mass rotating as a solid.
With loss of heat by radiation, it contracted and rotated more rapidly.
At various stages of the contraction the centrifugal acceleration
at the equator of the rotating mass equaled the gravitational accelera-
tion toward its center. At these places the contracting mass left
behind gascous rings which were concentrated into planets by the
mutual gravitation of their parts. 1n six cases, after the contracting
rings had assumed approximatcly spherical forms they similarly
contracted and left behind smaller rings, which became satellites.
This theory is delightfully simple and can be stated in a few sentences.
It makes few demands upon the imagination to conceive of its various
steps and it requires no sustained mental effort to organize them
into a unified whole. Tt raises no unanswered questions and arouses
no doubts. The account of the creation and the origin of the earth
in Genesis is not simpler.

He then summarizes the second in the following words:

In striking contrast with the foregoing, consider the planetesimal
hypothesis. The fundamental®point of view adopted in it is that
the stars of our galaxy constitute a group of mutually related objects,
the evolution of each depending in part upon its relagionships to the
others. They mix and mingle with one another, in the course of
time, somewhat like molecules in a gas. At the time of the dynamic

' The Planetesimal Hypothesis—Science, December 7, 1928, Volume LXVIII,
Number 1771, pp. §49-559.
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adventure of a suitable near approach of one star to another, planets
are born from the parent suns. These planets grow up around
nuclei by the accretion of countless little planets (planetesimals)
born at the same time. Not only in the broad sweep of events
leading to the birth of the planets as independent objects does
this theory differ completely from the Laplacian, but also all the
dynamical considerations involved in the growth and evolution of
the planets are wholly different. More than one commentator on
the planetesimal hypothesis has regarded with favor the origin of
the plancts by dynamic approach as being likely, and has then utterly
failed to realize that the growth and evolution of the planets could
not have been along the lines that are consonant with the Laplacian
theory. The new hypothesis gives an entirely new earth and lays
down a new basis for the development of dynamic geology.

In other words, these two hypotheses may be thought of as
A and B in Iig. 129. The cffects in this case to be explained
are the characteristics of the solar family.

Now let us see how the process of checking an hypothesis
or cause in the older sense corresponds with that of checking an
hypothesis or cause in the statistical sense. The essential dif-
ference is this. In the first case we may be able to find that
some of the observable phenomena cannot be effects of the
postulated cause. In such a casc it is customary to reject or
modify the hypothesis. For example, this is true in respect
to the Laplacian hypothesis as to the origin of the carth referred
to above. In the statistical case, however, it is not so easy to
reject an hypothesis, as we shall now see.

Suppose, for example, that we attempt to test the hypoth-
esis that a sample of # observed values of a quantity X came
from let us say the first universe of (93). We have already
touched upon this problem in Part VI in the discussion of the
choice of statistic to be used in a given case and of the choice
of method of using this statistic.” Let us look at this problem
in a more general way. We may represent a sample of size #
as a point in # dimensional space. In a similar way we may
represent all of the possible different samples of size # that
may be drawn from an assumed universe as points in this same
space. To get a test of whether or not the observed sample
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came from the assumed universe, it appears to be necessary to
establish certain contours in this #» dimensional space within
which the points corresponding to an observed sample must fall
if we are to accept the hypothesis that it came from the assumed
universe. Naturally there are an indefinite number of ways of
setting up such contours and the choice of any one is quite
arbitrary on the part of the individual scientist as was the cor-
responding choice of statistic in Part VI.

In any given case there are in general an indefinitely large
number of possible hypotheses. Hence, in addition to the
problem of establishing arbitrary contours upon which to test
a given hypothesis, we must consider the problem of judging
between alternative hypotheses. Here again we come upon the
indeterminateness of the statistical method. It appears that
there is no ultimate ground upon which to base our final choice.!

6. Measurement of Average X and Standard Deviation o

The concept of physical properties and phenomena as
frequency distributions introduces the concept of measurement
of such distributions. Since for most engineering purposes it is
sufficient to know the average X and standard deviation ¢ of
such a distribution, we shall consider the problem of measuring
these two characteristics.

Assuming that the set of # observed values,
X], l’2)..l’4X’1,uoo,A’n,

of a quality characteristic X satisfy the equation (58) of control,
it follows from the law of large numbers that the observed
average X and standard deviation ¢ can be made to approach,
in the statistical sense, as close as we please to X and o re-
spectively by making the sample size 7 sufficiently large. In

! See in this connection the especially interesting and valuable article by J. Neyman
and E. S. Pearson entitied *On the Use and Interpretation of Certain Test Criteria
for Purposes of Statistical Inference,” Part 1, Biometrika, Volume XX-A, July, 1928,
Pp- 175240, Part V11, Biometrika, Volume XX-A, pp. 263-294, December, 1928.

Also see pp. 303-314 of A. N. Whitehead's Process and Reality, Macmillan Com-
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other words, it follows from the law of large numbers and
Tchebycheff’s theorem that, by making # sufficiently large, we
can bring as close to unity as we please the objective probability
P that the inequality

| X-X|<e

will Dbe satisfied, € being any previously assigned positive
quantity.

In practice, however, it is not feasible to take an indefinitely
large number of obscrvations. In fact, we must often be sat-
isfied with estimates of X and o derived from comparatively
small samples. TFor example, we may wish to determine an
approximate standard for a quality X of a given kind of appa-
ratus from measurements of this quality on from five to twenty-
five tool-made samples. Or again, we may wish to adopt a
standard for the physical property of some new material or
alloy from measurements made on comparatively few pieces.
We shall now consider various ways of doing this.

A. A Posteriori Probability Method.—This method has been
discussed in a very interesting and novel manner by Molina
and Wilkinson.! Assuming that the set of # observed values of
the variable X have come from a normal universe

} 1 (Y- X)
f(\) ZO'\/E;"— 207,
in which X and o are unknown, the a posteriori probability
P(X)dX that the true mean lies within the interval X to
X + dX is given by

n
2 \-X)2

WX, o)™ e

o,u da) (94)

PX)dX = AdX
0

where A is a constant and #(X, ¢)dXdo is the a priori prob-
ability, before the observations were made, that the true mean
and standard deviation were within the intervals X to X + 4X
and o to ¢ 4 do respectively.
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To get a definite answer in a given case, certain assumptions
must be made in order to give the parameters in (94) specific
values in terms of the statistics of the set of # observed values
of the quality X, and in every case one must assume some
particular form for the function #(X, ). In other words,
before any measurements are made, one must choose some one
function /7(X,0) out of the indefinitely large number of possible
functions.

Assuming that X and ¢ are independent, we may write

WX, o) = I(X) (o).

Making these various general assumptions and certain others
of a more detailed nature, the authors then assign to the param-
eters in the functions //’y and //; twenty-one sets of values
out of a possible infinite number of such scts, and find as many
probable and 99.73 per cent crrors for a single example. Their
results arc shown graphically in Fig. 130.! The startling and
very important thing to note is the great significance that must
be attached to the choice of the a priori existence probability
functions #1(X) and /¥ :(c) before any measurements are taken.

Of course, any one of the twenty-onc or, in fact, of the
indeﬁnirely large number of probability distributions /(X)dX
of (94) gives us only the @ posteriori probability that the true
mean lies within a specified range, whereas we wish to get
usable estimates of X and o. Ilence, cven though one goes
through the a posteriori solution under the conditions stated
above, 1t is llke]y that he will take the observed average X
as his best estimate of X. As for an estimate of o, it will be
expressible as a multiple of the observed standard deviation,
let us say co, the value of ¢ depending upon the particular
assumptions made in applying (94).

B. Maximum Likelihood Method—In the particular case
just considered the probability P of the simultancous occurrence
of the set of observed values X1, X, ..., .\o, .., A% within

1'The authors used the precision constant 4 instead of o in this paper. However,

they have also shown the distribution of o (the dotted lines) for the first seven sets
of assumptions.
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the respective intervals X to X; 4+ dXi, X» to Xz + dXo,. . .,
XitoXi+dXi, ..., XntoXn+ dXnis

P=T- - X
i= lJ\/21r & b

where 7 and s are universe parameters.  That value of m which
will make P a maximum is given by the solution of the equation
o(log P
ollee P) _
om

since P is a maximum when log P is a maximum. This gives
the observed average X as an estimatc of X.
Similarly the condition

ollog P)
o

gives the observed standard deviation o as the estimate of o.

Since the expected value o of the observed standard devi-
ation in samples of size # drawn from a normal universe is less
than the standard deviation o of the universe, it is obvious
that the estimates of o derived by the likelihood method are
too small in the long run, particularly if the sample size #» is
small.

C. Empirical Method. —Assuming, as before, that we are
sampling from a normal universe frce from assignable causcs,
there is perhaps no better estimate of X than the average X
of the sample. If, however, there is any reason to believe that
a few of the observed values were influenced by assignable
causes, this fact should be taken into consideration.

If we assume that we are sampling from other than a sym-
metrical universe, it becomes all the more important that we
make use of the average X of the sample of size # as an estimate
of the average X of the universe of possible effects.

Coming to the estimate of the standard deviation ¢ of the
normal universe, we have seen that a posteriori probability
theory does not provide a direct method of establishing a
specific value as the best estimate and that the likelihood
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method leads to an estimate which is too small in the long run.
Referring to Fig. g7 indicating the important characteristics of
the distribution of an observed statistic O, say standard devi-
ation, we might be led to base our estimate of o on the assump-
tion that the observed o is the modal ¢ of the distribution of
this statistic. In other words, we might take as an estimate

where ¢; 1s given in column 2 of Table 29. To do so, however,
means that in the long run estimates made in this way are too
large. An cstimate that will be consistent in the long run is
o o te aleo ot T

., Where ¢z 1s also given in Table 29.

There 1s thus some justification under these conditions for
. o .
adopting -~ as an cstimate of o. In any case the observed

standard deviation ¢ becomes the basis of an estimate. Hence
it seems reasonable that it should be tabulated together with
any correction thereof adopted as an estimate in a given case.

The estimate of ¢ of a non-normal universe presents addi-
tional difficulties since, in general, we do not know the dis-
tribution function of obscrved standard deviations in samples
of n. Here again the obscerved standard deviations in the long
run are too small, in the sense that the expected valuc in samples
of size # from a given universe is less than the standard devi-
ation o of that universe.

7. Measurement of Average X and Standard Deviation o—
Practical Example
Let us consider the significance of previous results in a
simple practical case. Four pieces of shoulder leather from a
given source were found to have the following tensile strengths
expressed in pounds per square inch:

5,290 ‘2,950
4,850 5,960
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Upon the basis of this information, what shall we choose as
estimates of the average X and standard deviation ¢ of the
tensile strength of leather from this source assuming that this
quality is controlled.

From what has been said in the previous section it is appar-
ent that the answer to this question depends upon many factors.
It depends upon more or less arbitrary assumptions as do the
answers to many practical questions. In each case, however, it
is likely that the average X = 4,762.5 and the observed stand-
ard deviation ¢ = 1,118.6 will be made the basis of the estimate.
Furthermore, it is obvious that the interpretation of these
depends upon the size 7 of the sample, in this case four. For
thesc reasons it appears that in the tabulation of results of this
character the experimentalist should always record the observed
average X, standard deviation o, and sample sizc 7.

In genera] it is perhaps reasonable to believe that the exper-
imentalist who 1s in charge of taking the data is in the best
position to make a reasonable assumption upon which to base
an estimate. For this reason it is desirable that he record what
he considers to be the best values to take as estimates of the
average X and the standard deviation ¢ of quality .\ assumed
to be controlled. It is likely in this case that the average X
will be taken as the cstimate of X. In the same way it is likely
that o will be taken as a quantity larger than o. As we have

L. . . . o . .
said in the previous section, the estimate — is a consistent es-
C2

timate in that in the long run the average of an indefinitely
large number of such cstimates would give the true value &
assuming that the universe of control is normal.

Anyone who wishes to make use of these results may use the
observed average and standard deviation and the sample size
as a basis for his own estimates of X and o, or he may choose
to use those selected by the experimentalist himself. In this
way he is free to make his own postulates basic to estimating
X and o.



CHAPTER XXIII
SAMPLING—MEASUREMENT

1. Place of Measurement in Control

In any program of control we must start with observed
data; yet data may be either good, bad, or indifferent. Of
what value is the theory of control if the observed data going
into that theory are bad? This is the question raised again
and again by the practical man.

Even though it is necessary, as a starting point in the theory
of control, to tabulate the results of # measurements of some
physical quality X in terms of the average X and the standard
deviation o, the engineer often reacts in something like the
following way. He will likely admit that this method is an
excellent one to follow if, as he says, the data are known to be
good, but he will often argue in a given case that the data are
not good enough to make it worth while to record more than
perhaps the average and the range. He may go so far as to
throw out one or more of the observed values before taking
even the average and the range. In fact I have heard industrial
research men say that they can get more out of a set of data
Just by looking at it than anyone without their experience can
get by the most refined analysis.

In discussing this point at a recent round-table conference !
on presentation of data, one prominent engineer had this to
say:

Most frequently we are confronted with expressing results that
have been obtained by empirical methods in the hands of fallible

376
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operators on more or less representative samples of generally very
heterogeneous materials. When we go to discuss the precision of
our methods, we always have three factors which have not been
controlled. We have the question of the authenticity of the sample;
we have the question of the operator; and we have the question of
the method itself. Hence it becomes a very complicated problem
to apply the mathematical methods of analysis to these data.

A number of years ago 1 read somewhere an expression which has
always struck me. It said something about mathematics being a
mill that grinds with exceeding fineness and yet a mill that is no
better than the grain that is put in it. So it always seemed that in
our work the first thing we had to do was to attempt to develop
the limit of precision of our methods after we had at least some-
thing to start with; then we could determine the effect of the
presence of the operator. Krom that point we could determine
the authenticity of our samples and we would be in a better posi-
tion to analyze our crop of results.

Not only in the fields of industrial research and engineering
do we get such a reaction. We find it also in the field of so-called
exact science~—for example, physics. Thus in a recent paper by
Millikan discussing the value of clectronic charge,’ emphasis is
laid upon the importance of the human judgment of the exper-
imentalist, as is typitied by the following paragraph:

This value of the electron is also that at which Birge finallv
arrives as a result of his survey of the whole field of fundamental
constants. It is true that he reanalyzes for himsclf my individual
oil-drop readings and weights them so that he gets from them the

value 4.768 + 0.005 in place of my value 4.770 £ 0.005, a result
that is so much nearer mine than my experimental uricertainty that
I am uite content—indeed gratified—but I may perhaps be par-
doned for still preferring my own graphical weightings, since 1
thought at the time, and still think, that T got the best obtainable
results in that way from my data. The person who makes the
measurements certainly has a slight advantage in weighting over
the person who does not, and the graphical method by which T got
at my final estimated uncertainty is, 1 think, in the hands of the
experimenter himself more dependable than least squares.

In this way we get into the following dilemma: The en-
gineer questions the usefulness of refined methods of analysis

! Loc. cit., Part 11,
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because his data are not good; the research man questions their
use because he does not need them. The sooner an engineer
appreciates this situation, the sooner will he become an influence
in getting good data such that he can use in the theory of control
to effect certain economies previously discussed.

Everyone will admit that in the literature there are numer-
ous scts of bad data. As an illustrative case we find the fol-
lowing statement ! in a recent paper on thermionic emission:

Most of the observations on emission made up to 1914, and a

considerable number of those made since then, are almost worthless
because of the poor vacuum conditions under which they were made.

Al Measurement a Sampling Process

An element of chance enters into every measurement; hence
every set of measurements is inherently a sample of certain more
or less unknown conditions. Even in the few instances where
we believe that the objective reality under measurement is a
constant, the measurements of this constant are influenced by
chance or unknown causes. llence, the set of measurements of
any quantity, even though the quantity itself be a constant, is
a sample of a possible infinite set of measurements which we
might make of this same quantity under essentially the same
conditions.

'rom this viewpoint, mcasurement is a samp]mg process
designed to tell us something about the universe in which we
live that will enable us to predict the future in terms of the past
through the establishment of principles or natural laws. In
fact, we may think of the process of examining a subgroup # of
a larger group of NV things along this same linc in the sense that
we look at the # things and try to predict what we would find
if we were to look at the remaining N — # things.

In the measurement of anything four kinds of errors may
arise:

[ Theoretical
A. Constant y Instrumental
1 Personal
1 Saul Dushman, Revtews of Modern Physics, Volume 11, pp. 381-476,
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Manipulative
B. Mistakes { Observational
Numerical

C. Effect of Assignable Causes, Type I

Methodological
D. Effect of Constant Chance Systems  Instrumental
Physiological

3. Good Data
Three prerequisites of good data are:

A. They shall come from a constant system of chance
causes—in other words, they must satisfy the criteria of Part V]I
if they are sufficiently numerous that such tests can be applied.
It this condition is not fulfilled, we must rely upon the experi-
mentalist’s ability to eliminate all causes of lack of constancy
in the chance cause system.

B. They shall be free from constant errors of measurement
and mistakes.

C. They shall provide a basis for estimating the error of
measurement.

4. Correction of Data for Constant Errors

Let us consider the simplest kind of measurement, viz., that
of a so-called physical constant such as one of those in the
equation of electron emission as a function of temperature of
the form

I
.\:._
-~

|
R

I
where
I = emission per unit area,

T = absolute temperature,

and 2 and 4 are constants characteristic of the emitting sur-
face.
Dushman ! considers in some detail the constant errors that

! Loc. cit.
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must be taken into account in making such measurements.
Some of the most important sources of theoretical instrumental
error are:

A. Error in measurement of surface area at maximum
temperature.

Temperature gradients along emitting surface.

Presence of adsorbed and occluded gases in emitter.
Presence of gases in tube.

Cooling effect of leads.

Effect of anode voltage.

Error in measurement of temperature.

DAmEO®

Errors (4) and (E) are largely eliminated through design;
(B), (F), and (G) are such that the observed data can be cor-
rected with the aid of available but complicated theory.
Errors from sources (C) and (D) are eliminated by proper bak-
ing of bulb, flashing of the filament, and evacuation of the
system.

Thus we get a picture of the technique required either to
correct for or remove two of the sources of constant error in
one very important physical measurement. A more detailed
study of this problem of correcting data for constant errors
will emphasize the fact that the degree of success will depend
among other things upon the intuition, reason, theorctical
knowledge, experience and technique of the experimentalist.
Is it any wonder that enginecering and even research data often
fail to satisfy the prerequisite of being free from constant
errors of the instrumental and theoretical kinds?

It is also true that to correct for personal errors often
presents a real problem. Often one finds a set of data revealing
the psychological tendency ‘on the part of the observer to
favor certain numbers, a case of which was noted in Part VI.
One of the most troublesome characteristics of such errors is
the fact that many of the psychological errors from their very
nature are such that we do not readily detect them in ourselves.
Witness for example the tendency for us to fee/ that the two
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lines @ and 4 in Fig. 131 are not of equal length although we
know better.

The method of detecting and eliminating assignable causes
has been discussed in sufficient detail in Part VI and hence
need not be considered here. Tt would perhaps be of interest

N a
/

NN

Fic. 131.—How Mucn LONGER 15 @ THAN 6?
to show how mistakes can often be singled out even by analyt-
ical methods. To do so, however, is out of place here because

the best method of correcting for these is to take care not to
make them, or to provide two independent observers.

5. Errors Introduced by Constant Systems of Chance Causes

After the state of constancy in the chance cause system has
been reached, the problem of correcting data for errors of

TRUE EXPECTED OBSERVED
VATUE VAI|.UE AVEFI(AGE
| ! l
, |
1 ] B
X X X

Fic. 132.~-ProsLem of FrumiNaring Errors oF MEASUREMENT.

»

measurement may be schematically indicated as in Fig. 132.
In this the true value is represented by X, the expected observed
value by X and the average of a sample of size n by X. The
distance AX represents the resultant constant error which must
be taken care of as indicated in the previous section.
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Under the assumption of constancy of the cause system, it
follows that
Ly X=X
n—
where the limit Ls is statistical.

In practice we usually take the observed average X as our
best estimate of X and hence make our constant error correction
with X as a base. Our problem is not solved, however, until
we form some reasonable estimate of the probability that the
inequality | X — X| < e is satisfied where ¢ is some preassigned
positive quantity. To do this it is necessary to obtain some
estimate of the true standard deviation o of the objective dis-
tribution of observed values. Except in the case of small
samples we usually take the observed value of standard devi-
ation as the best estimate of o. If we let

" e/
then we may, subject to the usual assumption of normality of
the distribution of error, use the normal law probability table
to estimate the probability that the absolute difference exceeds
20/\/n.

Thus we see that the complete discussion of the measure-
ment of the simplest kind docs involve the use of statistical as
well as physical theory.

An interesting illustration of such a system of errors attrib-
utable to a physiological source is that shown in Fig. 133 repre-
senting the distribution of minimum audible sound intensity.!
It is particularly interesting to note how closely the observed
distribution is approximated by the normal law.

6. Correction for Constant Chance Errors of Measurement

Let us next consider the case where the thing measured is
itself a constant chance variable with average Xr and standard
deviation oz. Furthermore, let us assume that the error of

! For a discussion of these results see “Some Applications of Statistical Methods,”
by W. A. Shewhart, Bell System Technical Journal, Vol. 111, No. 1, January, 1924.
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measurement is such that the expected value of the measure-
ment coincides with Xz and that the standard deviation of the
error of measurement is o,

Assuming that the error of measurement compounds linearly
with the true value and that there is no correlation between
them, it follows ! that

0y = Vor?4 0, (95)
225 (
200 -
175
150 -
125 -
100 |-

n

50

FREQUENCY

25}

5 -4 -3 -2 -1 0 1 2 3 4 s

I1c. 133.—DistrisuiioN oF MiNtMuM SouND INTENSITY.

where oy is the standard deviation of the objective distribution
of observed values. TFig. 134 shows schematically the rela-
tionship between the objective truc distribution fr(X) and the
objective observed distribution fo(X).

Example: Table 52 gives two observed distributions—one
is the distribution of single measurcments of efficiencies of
15,050 pieces of a given kind of equipment; the other is the
distribution of five hundred measurements on a single instru-
ment. It had previously been shown experimentally that there

VIf there is no correlation between the thing measured and the error of measure-
ment, we may think of an observed value X as being the sum of 4 true value X and
an error E.  Hence from section 3 of Chapter XVI, Part IV, we get (95). Another
way of arriving at this result is given by W. A. Shewhart in an article “ Correction of
Data for Errors of Measurement,” Bell System Technical Journal, Vol. V, pp. 11-26,
1926.
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TasLe 52.—TypicaL CaLcuLaTioN InvoLvep IN EiiMiNaring Errors
oF MEASUREMENT

Measurements on Single Measurement on
a Single Instrument Fach of a Number of Instruments
Cell Midpoint Frequency Cell Midpoint Frequency

2 8 2 oo 13
31 16 05 10
34 46 10 8
37 88 1 43
40 138 20 100
43 113 25 81§
46 71 30 1,761
49 22 35 2,397
52 4 +0 3431
45 3,703
50 2,165
55 sto
60 77
63 15
70 2

n = 500 n = 15,050

Xg = 4 obob Xo = 4 o247

O = 0 4423 oop = 0 8116

was no correlation between efficiency and error of measurement.
Since the numbers of measurements are large, we may assume
that oo = 00 and ox = ox where oo and ox are the observed
standard deviations given in Table 2. With this assumption
we get

or = \/E— oK’ = \/(0le 16)¢ — (0.4423)? = 0.0803.

7. Analysis of Bad Data

We are now in a better position to consider the practical
problem of the engincer in trying to determine how far he shall
go in analyzing his results. Again take as a simple illustration
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measurements of some so-called physical constant such as those
considered earlier in this chapter.

There is no known method for estimating the true value X
of the constant and the true standard deviation ¢ of the error
of measurement from a set of » bad data—data that do not
satisfy any one of the three prerequisites of good data. We
cannot say, however, that the man who took these data cannot
intuitively arrive at good (or at least practical) estimates of
both X and 6. Men of genius such as Poincaré claim often
to advance intuitively first and logically afterwards.!

We have seen how intuition, hypothesis, imagination, and
the like are basic to the process of finding and correcting for
constant and assignable errors of measurement. If we turn
to the history 2 of science and scientific method, we do not

Jikerd)

DISTRIBUTION
' OF OBSERVED !
vALUCS, Fo (X))

Fi16. 134.—LFFrcT oF ERROR OF MEASUREMENT.

find, however, many (if any) of the accepted estimates of
so-called physical constants that have been obtained by in-
tuitive use of bad data.

Let us go a little further.and see what would happen if we
were to accept results obtained from bad data through the

1See Dubs, Rational Induction, Chicago University Press, 1930, on this point.
Such questions lead us into the fields of logic, psychology, and philosophy in an attempt
to reduce to a rational basis the réle played by each of these in measurement. Other
references along this line are given in Appendix IIL.

2 References in Appendix 1I1.
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intuition of the experimentalist. Immediately the analysis of
data would be removed from the field of logic and we would
have to accept a result simply on the basis of the authority of
the experimentalist. Then we would face the difficult task of de-
termining the u/timate authority. Such a method is certainly not
scientific, nor does history reveal much ground for belief that it
is a method which can be relied upon to give satisfactory results.

In the light of this situation it seems reasonable to believe
that we are not justified in basing industrial development on
intuitive analyses of data. This does not mean that experi-
mental science has not profited by hunches that have come to
those in the process of collecting data later found to be bad.
The very fact that an experimentalist feels that his data are
bad is usually an incentive to get good data. A research man
is usually concerned with the fact that he may unknowingly
get bad data. Here it is that the mathematical theory of
detecting the presence of assignable causes (Part VI) comes to
his aid.! To get the best results through the use of these
criteria requires that the data be divided into rational subgroups
and that at least the averages and standard deviations of these
subgroups be known.

8. Analysis of Good Data

Good data in general arc expensive. In the process of
getting them many measurements are usually taken, from which
a few are finally chosen as being good.

Furthermore, cven though the cost of getting good data is
large, cxperience shows that the cost of making the most effi-
cient analytical study of such data is relatively small.

In Part VI the problem of choosing statistics to be used
and of choosing the best way of using them was considered.

11n this connection the following quotation from Mathematics of Life and Thought
by A. R. Forsyth is of interest. “‘Bricfly, the science of mathematics cannot be a
substitute for essential experiment; but 1t can show how experiments and observa-
tions, duly systematized, can be elucidated so as to disciminate between what is
principle and what is detailed consequence of principle.” The criteria described in

Part VI help to discriminate between what should be and what should not be left to
chance.
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The fact that one statistic is often much more efficient than
another is of considerable economic importance. For example,
in general, the standard deviation of 7 good observations is just
as good as the mean deviation of 1.14 # such data. To take
on the average one hundred and fourteen observations where
one hundred would do is an unnccessary waste of money which
becomes significantly large in extensive industrial research
programs.

To use the range in such a case instead of the standard
deviation effectively results in throwing away a very large
fraction of the information in respect to dispersion contained
in the observed data. For example, if the sample size # is
approximately sixty, the efficiency of the range is only about
50 per cent when compared with the standard deviation.  As
n increases beyond this value, the efficiency of the range rapidly
decreases. In the face of this fact we sometimes find the range
instead of the standard deviation tabulated in the literature.!

Table 53 is taken from an engineering report, and gives the
modulus of rupture for three species of telephone poles.  To

TasrLe 3.~ licvsiranse INerrrcteNnt Merwon oF Tasvrating Dara

, Modulus of Rupture m pw
Number » L - Ffhiciency of
Species of Poles in Max.—Min.
Sample Average | Maximum | Minimum
A 4 3,08% §,6090 2,980 100
B 16 5,978 7,000 4,460 75
& 100 5,787 TV790 3490 35

have tabulated only the ranges in Cases B and C amounted
to throwing away approximately 25 per cent and 65 per cent
of the information available.in the original data. This state-
ment is based upon the assumption that the original data were
good and that they came from an approximately normal uni-
verse. Of course, the range in bad data may give the cxperi-

! Examples of this kind are Tables 4 and 12 in the first edition of the very inter-
esting book, T1mber, Its Strength, Seasoning, and Grading by Harold S. Betts, McGraw-
Hill Book Company, pp. 34 and 91, 1919.
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mentalist some indication of the effects introduced by assignable
causes of Type I. Asindicated in the previous section, however,
the interpretation of the range or any other statistic derived
from bad data should be made by the experimentalist and can
be accepted by another only upon the authority of the exper-
imentalist.

For a sample of four, practically all of the information con-
tained in the data is retained by using the range.

It is for such reasons that efficiency in analysis and pre-
sentation of data has been considered so often in the previous
chapters. Graphical methods of analysis have not been given
any attention simply because experience has shown them to be
inferior to and less efficient than analytical ones.!

9. Minimizing Cost of Measurement—Simple Example

Let us consider the following simple problem: What is the
most economical way of measuring a quality X controlled by a
constant system of causes to insure with a given probability P
that the average of the measurements will not deviate in
absolute magnitude from the average Xr by more than a pre-
assigned quantity e. l.et us assume that:

ay = cost of selecting each unit and making it available

for measurement,
cost of making each measurement,

az
number of units selected,

n

n; = number of measurements made on each unit,

ox = objective standard deviation of errors of measure-
ment,

and
o7 = objective standard deviation of true magnitudes of

the measured charaeteristic.

! Whittaker and Robinson make the following statement in the preface of their
classic, The Calculus of Observations: *“When the Edinburgh Laboratory was estab-
lished in 1913, a trial was made, as far as possible, of every method which had been
proposed for the solution of problems under consideration, and many of these were
graphical. During the ten years which have elapsed since then, graphical methods
have almost all been abandoned, as their inferiority has become evident, and at the
present time the work of the Laboratory is almost exclusively arithmetical.”
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Let us take P = 0.9973, then the range X = 39, includes
99.73 per cent of the observed averages Xo, and hence ¢ = 30%,

The average of #; measurements made on one unit is to be
taken as the observed value Xy of the true magnitude Xr for
that unit. This average has the standard deviation ox/+/7o.
Hence, from (95), the objective standard deviation of the
observed values is given by

9

9 9 7
0 = 0,2+ 05 % = 0,0 +

where opx: is the objective standard deviation of errors of aver-
ages of #2. Thus the objective standard deviation o, of the
average of m; observed values is

=
(4§} /O'Tl + :
M2
63:-—_~=\/-,._ = (6)
‘ \/’1] My ’ 9
which gives the relationship
, s
0,2 4 —
ne
M=o
oy,”

between #; and ..
Taking the cost of inspection as

C = ayny + asmns,

and using customary methods this can be shown to be a min-
imum when

g, |a)

e = —-\] .

g, Ya»

The following values correspond to one practical case:

.

t = 0.3 unit a1 = $0.50
Oz = 0.3 unit a» = $0.02
G7 = 0.9 unit P =o0.49973 -

‘With the aid of this theory we find that the most economical
method of measurement in this case requires two observations
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on each of cighty-six units. Here, as in general, we take
observed values of ¢, and o7 in large samples as estimates of
ox and o7 respectively.

10. How Many Measurements?

Perhaps the question most frequently raised by those in-
terested in the control of quality i1s: How many measurements
shall be taken? Of course, for such a question to be answerable,
it must be understood to mean something like this: How many
measurements shall be taken in order that one may have a
given assurance that such and such is true subject to certain
specific assumptions?  When so stated the question usually has
an objective answer.

Sometimes the question is put briefly as follows: How large
a sample shall be taken? When so stated, however, care must
be exercised to differentiate between the size of sample, meaning
thereby the number of things measured, and the size of sample,
meaning thereby the number of measurements, wherc one
thing may be measured more than once. The significance of
these remarks will be apparent as we proceed.

To introduce the subject, let us ask a very simple question:
Assuming that we know that a quality X is normally controlled
with standard deviation o, how many mecasurements of this
quality must we make in order that the probability will be, let
us say, 0.9973 that the deviation of the average of # observed
values from the truc but unknown arithmetic mean X be not
greater in absolute magnitude than some given value AX.

From what has previously becn said we see that the size #
of the sample required in this case is rigorously given by the
relation

—,.' ‘o
AX = 3—
H
In practice, however, we do not know o. 1In fact, this factor is

only obtainable as a statistical limit when the sample size #»’
is made indefinitely large. What we can do under such con-
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ditions is to estimate o from available data. Calling this
estimate o, we may solve for # in the equation

a
v n.
We can then say that the size 7 of the sample thus obtained is
the one required, assuming that ¢ = o.

Perhaps the most important thing to note in this connection
is that the standard deviation of the average decreases inversely
as the square root of the number of observations, because this
indicates the order of increase in the precision of the average
with increase in the number of observations under the assumed
conditions.

In general, if we know that we are sampling from a constant
system of chance causes, we can say that the standard deviation
of an estimate of any one of the objective statistics, fraction
defective p, average X, standard deviation ¢, and correlation
cocfhicient r, decrcases inversely as the square root of the size
of the sample, even though we do not know the magnitudes of
the respective standard deviations in a given case. Further-
more, given the standard deviation as a function of sample
size, for any statistic derived from a sample from a specified
universe, we have, as indicated, a means of determining the
significance of increasing the sample size.

It is very important to note that the answer given to the
question of how many measurements is in each casc limited by the
assumption that the variable X is controlled. 1f we ask a similar
question in a case where we are not willing to assume to begin
with that the data arc controlled, it 1s first necessary to try
to detecrmine by criteria already described whether or not the
variable under consideration satisfies this condition.

Example: Recent investigations ! have been made by the
American Rolling Mill Company to determine the life of ferrous
materials under different corrosion conditions. Data obtained

AX=3

IR. F. Passano and Anson Hayes, “A Method of Treating Data on the Lives of
Ferrous Materials,” Proceedings of the American Society for Testing Materials, Vol. 29,
Part 11,
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from a certain kind of sheet material immersed in Washington
tap water showed that the average time of failure of such
samples was X = 874.89 days and the standard deviation of the
time of failure was ¢ = 85.31 days. One kind of practical
question of interest to the research engineer of this company
is: What sample size #» must be used in order that for similar
test conditions, the probability shall be o.go that the average
time for failure determined from the 7 tests will be in error by
not more than g per cent of the average of the universe?

Assuming that the observed values of average and standard
deviation are the true values for the universe, and that averages
of samples of # are distributed normally, we may answer this
question as follows: The allowable error is § per cent of 874.89
days or 43.74 days, and this must correspond to a probability
of 0.9o or to an error of 1.645 ¢/+/7 as found from Table A of
Part II. Hence # is found by solving the equation

1.6456/\/n = 4374

having assumed that o = 85.31. In this way, we get # = 10.

11. Law of Propagation of Error—Practical Significance

Most measurements are indirect in that the quality Y to
be measured is derived from mecasures of let us say m other

qualities
X, Aoyt A 0 A

to which it is either functionally or statistically related. In this
section we shall consider the functional case, examples of which
are met in everyday work.

A simple illustration is the measurement of the density D
of a solid by the formula )
D= L

Wy — W2

where w; and w. are the weights of the solid in air and water
respectively. .
If the solid is such that we can measure its volume » in a
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more direct way than by determining the difference w; — w; we
may use the formula

D=

NI &

to obtain the density.
The choice of method of measurement involves at least two

things:

A. Determination of effect of errors of measurement in each
of the m qualities upon the standard deviation of the calculated
values of Y.

B. Choice of most cfficient method of measuring Y.

Let
Y=FX, Xoy..., X5 ..., Am)

be the functional relationship between the quality ¥ to be
measured and the m other qualities upon whose measurements
the calculated (measured) value of Y depends, as the calculated
value of D depends upon the observed values of w; and w;
above.

Assuming that F can be expanded in a Taylor’s series
and that terms containing higher powers in the x’s than the
first may be neglected, we have

E)F> ( oF ) < oF )
~ Xo| = R 7771 Bl BN
o0X)| X.+ ’ GAE X.+ +m O0Xm X,

where x; = X; — X, and the derivatives are formed for the
mean values of the X’s. Under these conditions we have as

in Part V

Y =FX,Xo,... ,)_(m)+x1<

Y = F(Xl, ig, ey Xm,),
and

oy = \/dnzf-"l: + a2%02% +,. . .+ aP0P + L+ amfon®,  (97)

where
(%)
ai=\—] ,
: oXi/ g,

o: is the standard deviation of the measurement of Xi, and oy
is the standard deviation of the indirect measurements of Y.
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Equation (g7) is the law of propagation of error, and gives
us the information called for under (.7).
If for the simple problem of measuring density we let
W; = expected weight in air,
W2 = expected weight in water,
o; = standard deviation of mcasurement of ws,

o, = standard deviation of measurement of ws,

and op = standard deviation of error of measurement of D,
we have on applying (97)

=5 W 2o, + Wi'o,%

Op = — —
(W, — wu)*

By a process exactly similar to that used in Paragraph 7,
Chapter XVII of Part V, we can determine the mean values

X, Xo, ..., X4 .., Xim

(if they exist) which will minimize oy. By comparing the
minimum values of oy obtainable by different methods we can
arrive at the most efficient method of measuring Y.

12. Measurement through Statistical Relationship

Let us consider the problem of mcasuring some physical
quality such as tensile strength which cannot be measured
except through the use of some statistical relationship unless
we resort to a destructive test.

Let us start with a simple question. How can we be sure
as to whether or not the tensile strength of the bar in Fig. 135
lies within specified limits Yy and Y2? The answer is: Break
it and find out. However, since we cannot break it and use it
too, we must be satisfied with the answer to a slightly different
question: IHow shall we test the bar indircctly through sta-
tistically correlated variables? Let us start with the illus-
tration introduced in Part 1, Fig. 14. Let us consider first the
correlation between tensile strength Y and hardness X. We
can never expect to be sure that the tensile strength of tested
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material will lie within two specified limits ¥; and Y2 by making
sure that the hardness lies within some two limits X; and Xo.
The situation is shown! schematically in Fig. 136, for the

Fic. 135.—TEesT Bar.

data of Fig. 14-a. In such a case values of tensile strength
may be expected to be found in the shaded area of the figure
between the limits X7 and X» and outside the limits Y7 and Y.

&

TENSILE STRENGTH
<

HARDNESS
.

Fic. 136.—Wny Onc CanNol BE SURE THAD SIRENGIH LIEs WITHIN SPECIFIED
Limrts.

1f, and only if, the product is controlled in respect to the two
- correlated variables Y and X, can we predict how many pieces

! Mathematical details considered in Part I1.
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of material having quality X within the range X, to X» will have
quality Y within the range Y1 to Ys. In other words, the use
of indirect statistical measures must be based upon the assump-
tion that the probability P that the point corresponding to an
observed pair of values X" and Y will fall within a given rectangle
is constant.

A. Calibration—Suppose one has a lot of N pieces like the
one shown in Fig. 135, and wants to mark each of them with a

[

TENSILE STRENGTH —Y

A-LINE OF REGRESSION X ON Y
B-LINE OF REGRESSION Y ON X
C-LINE OF BEST FIT

HARDNESS — X

F16. 137.- Suari. ONeE oF THEst Lines Be Usep ror CaLIBRATION?

value of tensile strength derived from the corresponding hard-
ness measure. What functional relationship between Y and
X shall be taken as a basis? In other words, how shall we
calibrate Y in terms of X" assuming that these two variables
are normally correlated? Shall we take one of the three lines
illustrated in Fig. 137?

Let oy = standard deviation of objective distribution of ten-
sile strength Y,
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oz = standard deviation of objective distribution of

hardness X,

r = correlation coefficient between X and Y in objec-
tive distribution of X and Y.

It follows from the discussion of lines of regression in Part II
that the line of regression of tensile strength on hardness

~
a

=r-"x,
Y .
wherey = ¥ — Yand x = X — X, gives the expected or aver-
age value of y to be associated with a given value of x. In other
. ., IO
words, if we were to mark with —”x each of a very large number
Or
n test pieces that gave a hardness value X + &, and then we
were to break these to determine their tensile strength, we
should expect to find that the average tensile strength of the
. 1o .
n pieces would be —’x, although the observed tensile strengths
Ox
would be distributed about this value.
Furthermore we should expect 99.73 per cent of the # pieces
to have tensile strengths measured in terms of deviations,
within the limits

rO’,
— X+ ’Gy\/l — 1'
O

since as we have scen in Part 11, the standard deviation of
any y array about its mean in this simple case is

Sy = O'y\/l — 12 (98)

In fact, if the regression of y on x is linear and the scatter
of points is homoscedastic, then the standard deviation of each

. array of y’s about the mean -y is given by (98) and we can
Or

say by virtue of Tchebycheff’s inequality that more than
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IOO<I - ;) per cent of the y values may be expected to lie

within the band
oy
I—x =+ Isy. (99)
Oz

Where the correlation surface is normal, the number of
points lying within such a band is given by the normal law
integral. Under the same conditions, similar statements hold
with respect to the regression of x on y. It is sometimes
argued that some line other than the line of regression should
be used as a measure of y in terms of x. One such suggestion
is that line for which the sum of the squares of the perpendicu-
lar distances of the points in the xy plane to this line is a
minimum. The reason for choosing the line of regression
instead of this or any other line is that this is the only line
about which we can make the general statements previously
made in connection with the range (g9).

In the discussion of Fig. 14 it was pointed out that the use
of the plane of regression of tensile strength Z on hardness Y
and density X is a better measure of tensile strength than either
the line of regression of Zon X or Zon Y. This follows because
the standard deviation,

o ) Y 1 4
1 —Try~— Tyz- — Yrz™ + 20pylyslez| °
Ozqy = Oz~ - =~ -

e
of the values of tensile strength from the plane of regression is
less than either
Szz = 0.V 1 — 1%,
or

Soy = 0:V 1 — 1,7,

where szz and sz are the standard deviations of tensile strength
from the lines of regression of z on x and z on y respectively.
B. Effect of Error of Measurement—Thus far we have con-
sidered the problem of measuring some quantity such as tensile’
strength Y through its statistical relationship with some other
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quantity, let us say hardness X. In general, the observed
values of both tensile strength and hardness are in themselves
subject to error. Let us assume for example that

0, = The standard deviation of the objective distribution
of the observed values of hardness,

oy, = The standard deviation of the objective distribution
of the observed values of tensile strength,

0z, = The standard deviation of the objective distribution
of true valucs of hardness,

0y, = The standard deviation of the objective distribution
of true valucs of tensile strength,

ro = The truc correlation between the observed values of
hardness and tensile strength,

and r = The true correlation between the true values of
hardness and tensile strength.

It can easily be shown that under these conditions
ro = — ", (100)

From this relationship we see that the correlation between the
observed valucs of two correlated variables is always less than
the correlation between the true values, unless the error of
measurement of each of the variables is zero. In other words,
the smaller the error of measurement for each of the variables,
the more precise will be the regression method of measuring
one in terms of the other.

C. Conclusion.—To be able to measure through the use of
statistical relationship, it is necessary that the variables be con-
trolled. Tn the simple case of normally correlated variables the
line or plane of regression has certain advantages as a calibration
line or plane over any other.

It should be noted, however, that the use of a statistical

“calibration curve involves the introduction of a concept quite
different from that underlying the use of a calibration curve
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based upon a functional relationship. The use of statistical
relationship introduces a certain indeterminateness not present
in the use of the functional relationship. To make this point
clear let us suppose that we had, say one hundred bars, such
as shown in Fig. 135, and let us suppose that we wished to
test these for tensile strength indirectly through the use of the
Rockwell hardness measure.
If we assume that tensile strength Y is functionally related
to X, as
Y = f(X), (101)

where f is a single valued function, then for every X there is
one and only one value of Y. If we use such a calibration
curve, we can mark each of the one hundred bars with a value Y
which will be the tensile strength of that bar except for errors of
measurement.

1f, however, the two quantities ¥ and X are related sta-
tistically and we use a line of regression

¥ = I1—"u, (102)
T

where y = Y — Y and » = X" — X, then we cannot say that
for a given valuc of X’ there is only one value as given by the
line of regression of y on x. Instead for every X there is an
array of Y’s, the mean of which under controlled conditions
will be the value of Y given by (102). Here we run into the

kind of indeterminateness discussed in the last chapter.
Equatlon (80) expressing r as a measure of the commonness
of causation under slmphhed and controlled conditions may
help one to form a better picture of the significance of the line
of regression (102) as a calibration curve. Unless r is unity
there are always causes of variation in Y that are not present
in X. Even under these simple conditions if we could be sure
that the correlation coefficient 7 and the variable X were con-
trolled, we could not be surc that Y was controlled and we
could not be sure of the interpretation of y as given by (102)"
except in the sense that the mean value of y for a given X would
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be given by (102). 4 priori, however, it seems unlikely that ¥
will be uncontrolled if both 7 and X are controlled. At least it
appears that the best we can hope to do in trying to control Y
through the measure X is to try to control » and X.

D. Example: Since the use of statistical relationship plays
such an important role in measurement, it may be of interest
to consider another simple problem. Many machine measures
of quality depend upon the use of statistical relationship. A
very important type of machine in the telephone plant is that
introduced to supplant measures depending upon the human

CURRENT

) 20 30 40 50
TIME IN StCONDS x (0-3

Fic. 138.—0OsctrLocram or “Noiwse Currenr.”

ear, such as in testing the quality characteristics of telephone
instruments.

Ivig. 138 shows the oscillogram of a greatly magnified “noise
current”” attributable to chance fluctuations in the resistance
of a certain kind of telephone instrument. It is obviously
desirable to go as far as one can in reducing such noise to a
minimum and in controlling the effect of this kind of distortion
as measured by the human ear. Consequently, all instruments
of this type are tested to make sure that they meet specification
requirements in respect to this kind of distortion. Of course,
the cost of doing this by ear would be prohibitive; therefore
it is desirable to secure the economic advantages of a machine
measure.
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A little consideration will show, however, that it is almost
hopeless to expect to be able to find a machine measure of such
fluctuations in current that will be functionally related to the
measures of the human ear. The best we can hope to do is to
find some machine measure X which is statistically related to
the ear measure Y.
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Fig. 139 shows the calibration scatter diagram of a machine
measure X and ear measure Y on 942 instruments. These
data were obtained under conditions of control as determined
by the criteria described in- Pari VI. The solid line in this
figure represents the line of regression of the ear measure Y
on the machine measure X. The fact that the difference
nyz? — r? is approximately zero indicates that we are justified
in assuming linear regression. This incidentally is what we
should expect to get for reasons outlined in Part III.
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For reasons given previously in this section, it appears that
there is good ground for the belief that we may control the
quality Y determined by the ear by controlling the quality X
determined by the machine in respect to both the average X
and the standard deviation oz in samples of size #. To check
the calibration of such a machine, it is necessary that the cor-
relation » between the ear measure Y and the machine measure

X for a sample of 7 instruments be controlled in the sense of
the criteria of Part VI.



CHAPTER XXIV
SAMPLING

1. Fundamental Considerations

Table 54 gives the results of measurements of modulus of
rupture on twenty-four telephone poles of species D. Based
upon these data, what can we say as to the strength of this
species?

Assuming that no assignable causes of variation of Type I
are present, or in other words, assuming that these poles came
from a constant system of chance causes, it follows from the
discussion of the previous chapter that reasonable estimates of
the average X and standard deviation o of the distribution of

TaBLE §4.—Mobpurvs or Ruriure or Twenn-Four Thre D
TrirrnoNe PoLes

Pole Maoadulus of Pole Modulus of
Number Rupture Number Rupture
1 3043 13 5:385
2 [T iy 5843
3 3928 g 6,90¢
n 595 16 5,096
s 4,482 17 7,392
6 0,248 18 6,184
i 6,012 19 4,885
8§ 6,647 20 6,182
9 7017 ° 21 6,201
1o 5,340 22 7,334
11 8,712 23 5,497
12 5,819 24 4,021

Average = §,829 psi
7 = 1,159 psi
494
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modulus of rupture given by the assumed constant system of
causes are

X =X = 5,829 psi

o

g .
— 1,197 psi.

2

So far as the distribution of the twenty-four observed values is
concerned, there is no definite evidence of lack of constancy in
the chance cause system. Under these conditions one would
be led to the conclusion that the average strength and standard
deviation of this species of telephone pole are 5,829 psi and
1,197 psi respectively.

Any one who knows anything about the strength charac-
teristics of timber would likely and justly challenge such a
conclusion. For example, such a one would likely ask what
effect moisture content has on the strength of poles of this
species, knowing as they would that moisture is at least for
most species an assignable cause of variation in strength.

Dividing the poles in respect to moisture content in this
case leads to the results shown in Fig. 140. There can be little
doubt that moisture content is an assignable cause in this case.
How then, does this affect the validity of our conclusion arrived
at upon the assumption of constancy?

From Fig. 140 it appears that there is a difference of the
order of magnitude of 1,000 psi between the strength when
the pole is dry and that when it is wet. What strength
one may expect to find in the future then may be something
nearer §,000 psi than the predicted 5,829 psi if the poles
to be tested are wet. It appears that prediction based upon
a sample coming from a non-constant system or non-controlled
system of chance causes may differ widcly from what the
futurc will reveal. What reliance then, asks the engineer,
can be placed on sampling results? The answer is that pre-
diction based upon a sample from a non-controlled universe in
which the causes of lack of control are unknown is hkely always
‘to be in error just as a measurement uncorrected for constant
errors always in the long run is in error. Sampling theory
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applies to samples arising under controlled conditions. Too much
emphasis cannot be laid upon this fact. To be able to make
accurate predictions from samples, we must secure control first
just as to make accurate physical measurements, we must eliminate
constant errors.

In this section we have approached the problem of inter-
preting a sample from a practical angle, and in so doing, have
been led to see the importance of control. Having read Parts
III, IV, and VI, one sees that thec only theoretical basis of
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interpreting a sample is the assumption that it arose under
controlled conditions characterized by (45) in the most general
case, or in other words, by the fact that the sample was taken
under the same essential conditions that will maintain through-
out the future so that the universal physical law of large num-

bers applies.

2. Random Sample

A sample taken under conditions where the law of large numbers
(45) applies will be termed a random sample. This concept of
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random is of fundamental importance in the theory of control.
By simple illustrations we shall now try to make clear how this
concept differs from that of some of the prevalent definitions
of random in order that no confusion may arise in the use of
the term in this book.

Yule in that treasure house for statisticians, An Introduction
to the Theory of Statistics, indicates that the usual concept of
random sample is one drawn with replacement, though he crit-
icizes the use of the term random because it is so often taken
to be synonomous with haphazard. Caradog Jones ! apparently
would also have us believe that a random sample 1s one drawn
with replacement. For example, he says in effect: To select
99 sheep from ggg, number each sheep and place in a box gg9
tickets numbered 1 to 999, one to correspond to each sheep,
then pick out g9 tickets in succession being careful to replace
each and shake up the box before picking out the next; if
there were absolutely no difference between the tickets such
as would cause one to be picked more easily than another, the
selection made in this way would be random.

Now, if a random sample were only that kind of a sample
and if the theory of sampling had to start with that kind of a
sample, one can well imagine how enthusiastic a purchaser of
999 sheep would be about the theory. To such a man that
method of sampling would be foolish.

Not only is it foolish from a practical viewpoint in certain
cases to try to take this kind of a sample—very often indeed, it
is impossible to take a sample with replacement. As an illus-
tration: How would you take a sample tensile strength test
with replacement from the coil of wire in Tig. 1417

The kind of sample described by Yule and Jones is random,
of course, but so are other kinds of samples as will be apparent
from a study of the generafized law of large numbers (45).
Thus either a sample without replacement or a Poisson sample
may be random in this general sense. ,

1 4 First Course in Statsstics, G. Bell & Sons, Ltd., London, 1924.
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3. Sampling for Protection

Various methods of setting up sampling schemes to give
definite consumer’s risks were outlined in the last chapter of
Part VI. A study of the subject matter of the references there
given shows that the conclusions drawn rest upon the assump-
tion that samples are selected at random. In other words,
assuming that there are NV items in the lot to be inspected, it is
necessary that the sample of # required by one of these sampling

F16. 141.—How SnouLp Wi Cuoose A RaNpom SampLE oF THE TENSILE STRENGTH
oF THIS CoiL or WIRE?

schemes, for a certain consumer’s risk, be drawn at random.
The risks calculated in this way apply so long as the samples
are random. If, however, the samples are not random, the risks
do not necessarily hold.!

The kind of random sample required by the risk thcory
can be obtained by sampling without replacement from a bowl
containing NV identical chips marked 1 to N where it is assumed
that the chips have been thoroughly stirred before the sample
of n is drawn. We can see, therefore, the nature of the dif-
ficulties involved in getting a random sample of the poles from
the pole yard of Fig. 142.

As another illustration let us consider the problem involved
in drawing a random sample of soldered terminals from fifty
panels such as the one shown in Fig. 143 where there are 4,500
terminals on each panel.

1 Cf. Sec. 1 of this chapter.
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We need not go further to see that it is very seldom feasible
to draw a sample in which the experimental conditions requisite
for randomness have been secured. Therefore we must rely
upon the engineering ability of the inspector to divide as in
Part VI the total lot NV to be sampled into, let us say, m sub-
groups which @ priori may be expected to differ assignably.
A sample may then be drawn from each subgroup of the right
size to insure that the chosen risk is met by the sampling test
for each particular group. These remarks are sufficient to
emphasize the importance of @ priori information about the
lot prior to the taking of a sample.

Now let us consider the problem of selecting a sample from
a shipment of ten carloads of boxed material, there being
twelve items in a box and roughly 1,000 boxes in a car. Obvi-
ously it is not feasible to arrange experimentally for a random
sample to be drawn. The next best thing is to try to divide the
total of N = 120,000 items into m rational subgroups. If,
however, we know nothing about the manufacturing process
or the conditions under which the lot was produced, we are
faced with the necessity of doing something that we cannot do;
yet we know that unless the sampling is done as it should be,
sampling theory does not apply.

Fia. 142.—How Suourp WE CHoosE A SAMPLE OF THE POLES IN THIS YARD?
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Thus we see how important it is that the consumer know
assignable causes of variation if he is to devise a sampling plan
to insure that the product accepted is of satisfactory quality.
If the product is controlled, one can easily set up a satisfactory
sampling plan, but if it is controlled, the plan is often not
needed. If the product is not controlled, the consumer needs
to know the assignable causes of variation so as to establish an
adequate sampling scheme.

Fic. 143.—How SnouLp WE CHOOSE A SamrLE OF THE SOLDERED TERMINALS IN
THIS PANEL?

In this way we come to see the advantage of control to
both consumer and producer. Just as each of these now secure
advantages through cooperating in laying down specifications!
for quality, it is reasonable to believe that each will soon try
to obtain the mutual benefits of control.

.
.

4. Representative Sample

A sample that is representative of what we may expect to
get if we take additional samples, is one satisfying the general

10n this point see H. F. Moore's Text-Book of the Materials of Engineering, 4th
Edition, Chapter XVII, McGraw-Hill Book Company,
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condition (45) of the law of large numbers. In other words,
if we let IV be the total universe, finite or infinite, to be sampled,
we should try to divide the universe on an @ priori basis into m
objective rational subgroups as represented schematically in
Fig. 144. The total sample of # should then be divided between
these 7 subgroups in such a way as to give some indication of
what we may expect to get from each group.

Fic. 144.—ScHEMAric oF Division 1810 RaTioNal SusGrours,

5. Size of Sample

We have seen in the previous chapter and in the last chapter
of Part VI that the size of sample always depends upon what
we assume a priori to be the conditions under which we are
sampling. In any case the interpretation of the sample rests
upon the assumption of control, or upon the assumption that
the law of large numbers holds in the particular case. Thus
we need to know if the quality of the product gives evidence
of control, and in this way we are forced to come back to the
problem discussed in Part VI.

A very simple case will illustrate this point. Several years
ago an engineer reported trouble on the job because the width
of saw-slots in the screw heads was under minimum require-
ments so that the available screw-drivers could not be used.
The question was raised as to how large a sample » should be

" inspected in each lot of size N to protect against the recurrence
of this trouble. Investigation revealed that a sampling plan
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was already in usc in which a certain fraction was taken from
each lot of N. Just a little engineering investigation showed
that the only assignable cause of the kind of trouble reported
was wearing of the saw blade that made the slot. The obvious
thing to do was to inspect the blade and not the screws. The
important question was not “how many,” but rather “how.”
A few measurements of the saw blade to control the product
were worth far more than many measurements made blindly,
as it were, on the screws to find trouble that should have been,
and could easily have been, eliminated.

6. Size of Sample—Continued

To summarize, we may say that the answer to the question
as to size of sample depends first of all upon whether or not we
can assume that the product is controlled. However, to deter-
mine whether or not the product is controlled, it is necessary to
use the sampling process after the manner discussed in detail
in Part VI. The answer to the question—How large a sample?
depends upon the following five important things considered
in that chapter:

A. Ability of engineer to divide data into objective rational
subgroups.

B. Choice of statistics.

C. Choice of limits for statistics.

D. Choice of method of using statistics.

E. The way control is specified.

Illustrative examples showing the importance of each of
these five factors have already been considered in Part VI. It
may be of interest, however, to give one more illustration here
to show the importance of choosing the right statistic in de-
tecting lack of control.

Fig. 145-a shows the observed fraction defective in a certain
kind of apparatus over a period of ten months. Beginning
about April, the rejections for this kind of apparatus became
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excessive. It is of interest, therefore, to see how this trouble
could have been detected through the use of a control chart on

fraction defective. Such a chart (Criterion I, Part VI) is shown
SO
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F1e. 145-6—Wnen Dip TrousLe FENrer?

in Fig. 145-4.  An indication of the presence of assignable
causes of variation is given by this chart eight weeks in advance.
Investigation revealed that it was very likely that the assignable
cause at this particular time was the same as that found to have
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caused the trouble beginning about the second week in
April.

As shown in Parts V and VI, the average is usually a much
more sensitive detector of assignable causes than is the frac-
tion defective. It so happened that the quality of a few instru-
ments of this particular kind had been measured as a variable
each week over this same period. Applying Criterion 1 to
these data, we get the results shown in Fig. 145-c. Evidence
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of lack of control is given by this chart sixteen weeks prior to
that given by Fig. 145-4.

Such results are typical of those experienced every day in
the analysis of inspection data to detect lack of control.

Having assured ourselves that the product is controlled
about a certain level of quality, it may be desirable in some
instances to set up sampling limits to give a certain assurance
that the quality in a given lot meets certain limits. From
what has been said in previous sections, it appears, however,
that the size of sample required to give the desired assurance
depends upon the following factors:

a. Kind of risk.

6. Magnitude of risk.

¢. Kind of sampling scheme.

d. Kind of specification.

¢. Previous information as to the quality of product.
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Obviously, therefore, the answer to the question—How large a
sample?—even when product is controlled—depends upon
several factors. Of course, the need for protective sampling
schemes is very much reduced when we have the assurance that
quality is being controlled.

7. Size of Sample—Continued

To emphasize the importance of the conclusions stated in
the previous section, let us consider very briefly four typical
problems.

A. Quite recently, the head of a large organization inter-
ested in the production of linseed oil raised the following
question. Three shiploads of flaxseed constituting a lot of
approximately 65,000 bushels had been received. A test sample
for chemical analysis had been taken from each shipload, the
manner of taking being unknown. An order had been accepted
for several thousand dollars’ worth of oil at a price based upon
the results found in the sample. When sufficient oil to fill the
order was extracted from a portion of the flaxseed, it was found
that the average oil content was so much less than that of the
sample that the producer suffered considerable loss. The
question asked was: How many samples should be taken under
similar circumstances in the future in order to prevent the
recurrence of such loss?

If we turn to almost any book on the specification of prop-
erties of materials for design purposes, we shall find problems
of which the following three are typical.

B. Given the observed distribution, Table 53, of resistance
of a sample of go4 pieces of a given kind of apparatus, what is
the tolerance limit X. that will not be exceeded more than,
let us say, o.5 per cent of the time?

C. The tensile strength of Code A wire shall not be less than
21,000 pounds per square inch. How many samples shall be
taken in order to insure that the specification is’being met on
a carload lot?

" D. Fig. 146 shows a typical cross section of a coating mate-
rial. One of the specification requirements is that this coating
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shall have an average weight between twenty-five and fifty
milligrams per square inch. The question is: How shall we
sample this product to insure that this quality specification
is being met?

TasLe 55.—How Suouvp WE Carcurate ToLERANCE Limirs?

Resistance Number of Resistance Number of
in Ohms Picces in Ohms Pieces
31 2§ 2 51 oag 30
33 75 3 53 7% 30
36 25 37 56 25 10
38 75 99 58 75 u
41 2§ 189 61 25 9
4375 228 63 75 3
46 23 175 66 25 1
48 75 76 76 25 T

It follows from what was said in the previous section that
we cannot give dcfinite answers to these questions in their
present form. It will be noted that in no case are we justified
in assuming that the material is controlled upon the basis of

.
Fi6. 146.—TvyricaL Cross SkcTionN oF A ProteECcTIVE CoATING—NoOTE IRREGULAR
LiNe oF DEmarkATION BETWEEN COATING AND METAL.

the information given. On the contrary, questioning revealed
in each of these typical cases that @ priori there were good
grounds for the belief that the quality was not controlled. In
not one of the four cases did the engineer proposing the problem
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know what assignable causes were likely to influence the par-
ticular set of data giving rise to the question.

Without this kind of information, any answer to the question
—How large a sample?—is likely to be greatly in error because,
as we have seen, the presence of unknown assignable causes may
play havoc with the conclusions derived upon the basis of any
sampling scheme which tacitly assumes, as it must, that the
sample is random or, in other words, that it has come from a
controlled system of chance causes. Before any one of the
four questions previously proposed can be given a reasonable
answer, it is therefore necessary to know whether or not we
are justified in assuming control, and if control cannot be
assumed, it is necessary that we employ the sampling scheme
that will make the best use of @ priori knowledge of assignable
causes.

8. Sampling in Relation to Specification of Quality

In Part V the advantages of specifying control of quality
were considered in some detail. It was pointed out that
wherever possible we should specify the average X and stand-
ard deviation o of the objective distribution of control. It is
of interest to note that we are led to this same conclusion from
the viewpoint of sampling theory because, strictly speaking,
it is only under the condition of control that we have a basis
for interpreting samples.



CHAPTER XXV

Tue CoNTROL PRrROGRAM
1. Résume

Five important economic reasons for controlling the quality
of manufactured product were considered in Part 1. In Chap-
ter XXI of Part VI, we saw that, from the viewpoint of con-
sumer protection, it is also advantageous to have attained the
state of control. 1f only to assure the satisfactory nature of
quality of product which cannot be given 100 per cent inspec-
tion, the need for control would doubtless be admitted.

In a very gencral sense, we have seen that the scientific
interpretation and use of data depend to a large extent upon
whether or not the data satisfy the condition of control (58).
The statistical nature of things and of relationships or natural
laws puts in the foreground this concept of distribution of effects
of a constant system of chance causes. For this reason, it is
important to divide all data into rational subgroups in the
sense that the data belonging to a group are supposed to have
come from a constant system of chance causes.

We have considered briefly the application of five important
criteria to check our judgment in such cases. We have seen,
however, that such tests do not take the place of, but rather
supplement, the inherent ability of the individual engineer to
divide the data into rational subgroups. Thus we see clearly
how statistical theory serves the engineer as a tool.

2. Control in Research
Since observed physical quantities are, in the last analysis,
statistical in nature, it is desirable that the results of research
be presented in a form easily interpreted in terms of frequency"
distributions. As a specific instance, the design engineer
418
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must depend upon the results of research to give him a basis
for establishing the requmte standard of quality character-
ized, as we have seen in Part V, by the arithmetic mean X
and the standard deviation o of a controlled quality X.

Naturally the research engineer is always interested in
detecting and eliminating causes of variability which need not
be left to chance. Hence the criteria previously discussed often
become of great assistance as is shown in Part VI. The data
of research are good or bad, depending upon whether or not
assignable causes of variability have been eliminated. In most
instances the data which have been divided into rational sub-
groups can best be summarized by recording the average, stand-
ard deviation, and sample size for each subgroup.

3. Control in Design

Our discussion of this phase of the subject in Part V in-
dicated the advantages to be derived through specification of
the condition of control in terms of the arithmetic mean X and
standard deviation ¢ of any prescribed quality characteristic X.

4. Control in Development

From the results of measurements of quality on tool-made
samples supposedly produced under essentially the same con-
ditions, we may attain tentative standards of quality express-
ible in terms of averages and standard deviations. These
tentative standards may then be used as a basis for the con-
struction of control charts in accord with Criterion I for the
purpose of detecting and eliminating assignable differences of
quality between tool-made samples and those produced under
shop conditions.

.

5. Control in Commercial Production

It is obviously desirable that a method of defecting lack of
control be such that it indicates the presence of assignable
* causes of variability before these causes have had time to affect
a large per cent of the product. For this reason, the method
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to be used on the job should involve a minimum number of
computations. Here again Criterion I usually proves sat-
isfactory.

6. Control in the Purchase of Raw Material

As is to be expected, a prevalent source of lack of control
is selection of raw material. It is not necessary that the dif-
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Fic. 147.

ferent sources of material come from what could be considered
to be the same constant cause system, but it is desirable that
each source of a given material be controlled within itself. As
an example, a physical property such as the tensile strength
of a given species of timber may be assignably different for’
different sections of the country although within one section
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TaBLE 56.—ScHEMATIC ForM oF Summary QuaLrty ConTroL REPORT

Quality Indication

Action Taken

uality Nature of Cause
Q y , or Called for
Controlled | Not Controlled
p.¢ V4
X, v New source of raw No other source of
material. raw material availa-
ble. Nothing can be
done unless we change
the kind of raw mate-
rial called for in the
design specification.
A v Raw material Should secure mate-
comes from sources | rial only from sources
assignably different. | A, B, and C.
X V4 Poor assembly oc- Source of trouble
casioned by new oper- | eluminated.
ators.
R 4 Unknown. Further investiga-
tion under way.
X Vv Low insulation| Source of trouble
caused by improper | climinated.
washing of insulation
material before as-
sembly.
A’I"

this variability may be such as to be attributable to a constant
system of causes. In the same way, we may have sources of
supply of piece-parts produced by different units of an organ-
ization or different manufacturers wherein there are assignable
differences between the product coming from different sources
even though each source represents a controlled product in
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itself. Such a condition can easily be taken care of in the use
of the material, since the object of securing control from a design
viewpoint is, as we have seen, the prediction of variability in
the finished product.

7. Quality Control Report

The quality report should, in general, do two things:

a. Indicate the presence of assignable causes of variation
in each of the quality characteristics,

4. Indicate the seriousness of the trouble and the steps that
have been taken to eliminate it.

Fig. 147 is a page from a typical quality report which ful-
fills the first requirement. Information similar to that shown
schematically in Table §6 meets the second requirement.
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APPENDIX 1
ResuLtanT EFFecTs oF ConsTANT CAUSE SYSTEMS

1. Introductory Remarks

Our discussion of the problem of establishing the necessary
and sufficient conditions for maximum control was based upon
the following three assumptions:

A. The resultant effect X of the operation of the m causes
is the sum of the effects of the separate causes.

B. The number m of causes is large.

C. The effect of any one cause is finite and is not greater
than the resultant effect of all the others.

It was stated that under these conditions the distribution of
resultant effects of a cause system approached normality as the
number m of causes was increased indefinitely, at least in the
sense that the skewness 4/Biyy and the flatness Buyy of this
distribution approach o and 3 respectively. We shall now con-
sider the basis for this statement in more detail.

To start with it will be found helpful in trying to get an
appreciation of the significance of the three limitations to carry
through the details of finding the distribution of resultant
effects of a few simple systems. For this purpose we shali
consider eight such systems characterized as follows:

m=35

(a) x: o01; o1; O01; O1; Ol
 EE A P A T I A O A B
ﬂl‘—'s

(b) x: o1; 02 03 4 ©OF%
R dE L LAY
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.51, 42, 33, 24,105
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m=6
(g)y »: ©o1I; 02, 04; O04; 02; Ol
.11, 11,11, L1, 11, 11
P: 2 25 wows w2 2o o2 o252 T
m=g
(h){ »: o1; o2 o04; o08; o016
Lo11,01 1. 11,11, 11
P:ow el owowi g2 2oz e

The notation used in describing the causc systems can be made
clear by considering only the first one. Here we have a system
of m = g causes. Each of these five causes may produce an
effect of either o or 1. For cach cause the probability of zcro

H

effect is ¢ and that of unit effect is ¢.

Using this cause system we may illustrate the method of
finding the distribution of resultant effects. Obviously the
magnitude of this cffect may take on values o, 1, 2, 3, 4, §.
The probability that the resultant effect will be zero is the
compound probability of each component cause producing zero
effect or (3)°. In a similar way the probabilities of getting a
resultant effect equal to 1, 2, 3, 4, or § are respectively 5(§) (3)4,
10()2 (§)%, 10()* (92, 5 ()%, and (§)%. In this way we get
the following distribution:

Resultant
Effect X o 1 2 3 4 4

Probability o 401878 | 0 401878 | o 160751 | 0 032150 | © 003215 | O COOI29
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This is shown graphically in Fig. 1-a. The distributions of
the resultant effects of the seven other systems are also shown
in Fig. 1. What significance do these results have?

0.4,

o
w

a b

lIl‘“I“IlllL‘_.;

PROBABILITY
(=]
N

o

o

PROBABILITY
o o (<]
N w 3
T T

o
T

“”IIIHL.# ““I”Lllluu

o
r

[ [ o
N %) L
T T

T

PROBABILITY
(=]

|l|ll|||||||uu....m J

o

I

PROBABILITY
o o ©o
N wa
y = )
T —

(=]

=)

! .1I||||““|h.
(o] L)

0 15 20 25 30 o 5 10 15 20 25 30
RESULTANT EFFECT

Fic. 1.—DistriBution ofF ResuLiant Errects or SimpLE CAUSE SysTeEMS.

’

In the first case we see that the distribution of resultant
"effects will always be characterized by the point binomial.
Hence it will always monotonically decrease on either side of
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the mode—in other words, it is a smooth distribution. Dis-
tributions &, ¢, 4, and e indicate the effect of lack of uniformity
among the component causes. From this viewpoint smooth-
ness is a necessary condition. That it is not, however, a suffi-
cient condition is evidenced by systems f, g, and 4.

As long as the component causes are the same, we have
already seen (Fig. 53) that the distribution of resultant effects
approaches normality as the number of causes is increased.
The condition that there shall be an indefinitely large number
of causes is, however, certainly not sufficient as is shown by
systems g and 4, for in these cases the shapes of the distributions
will always be those shown in Fig. 1-g and 4. Of course, if we
admit that the effect of any cause must be finite, systems such
as g and % with an indefinitely large number m of causes are
ruled out.

2. Practical Significance of Results

In practice one is confronted with an observed distribution
and from its nature must often decide whether or not it is
worth while looking for assignable causes of either Type I
or Type 1I. We shall concern ourselves here only with the
problem of deciding whether or not an observed distribution

TasLe 1.—TuermaL Unizs pEr Cu. Fr. or Gas

1,391 1,31 8. 1,203 1,291
1,416 1,268 1,380 1,273
1,367 1,294 1,349 1,242
1,258 1,368 1,360 1,231
1,289 1,330 1,313 1,320
1,199 1,284 1,351 1,340
1,27¢ 1,226 1,289 1,420

gives evidence of the presence of a predominating cause, that
is, an assignable cause of Type II.

Let us consider a typical problem. The operation data for
a certain gas plant for one month expressed in terms of arbitrary
thermal units per cubic foot of gas produced from oil by cracking
are those given below in Table 1. The data are tabulated in-
the order in which they were taken. Ideal operation calls for
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as high and as nearly constant value as can economically be
attained.

The following question was raised by the Director of
Research of the large organization interested in these results:

If 1 understand the methods of statistics correctly, it should be
possible to determine from these data whether or not there is a pre-
dominating cause of variation, and hence to determine whether or not
it should be reasonable to expect that a marked improvement in
product can be made by controlling one or at least a few causes of
variation. Am I right in this interpretation of the possibilities of
statistical methods?

In answer to such a question we can at least say something
like the following. If we divide the data into subgroups of
four in the order in which they were taken and apply Criterion I
of Part VI, we get no evidence of lack of control, as may easily
be verified by the reader. Assuming that the quality is con-
trolled, we may now consider the evidence for the presence of a
predominating effect. An examination of these data shows
that they are more or less uniformly distributed over the range
of variation as one might expect with a cause system such
as (4). Inother words, the observed results are consistent with
the hypothesis that a predominating cause was present. Need-
less to say such evidence is not conclusive: it 1s suggestive.

3. Analytical Results

Let us now find expressions for the skewness v/Biyx and
flatness Posy of the distribution of resultant effects under
simplifying assumptions.

If we let ;, represent the 7th moment of the effects of the
7th cause about their expected value, it may be shown ! that

0= =02+ 0"+ ...+ 07+ ... 407

Bs o= B+ Bap oot By e By,
and

m .
B = 2 (e, — 30,") + 3R7,
i=1
1See for example Elements of Statistics, by A. L. Bowley, published by P. S. King
& Son, Ltd., 1920, pp. 291-292.
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where p; is the ith moment of the resultant effect of the m
causes about the expected value of the resultant effect.

From these results we get

anc

" 2 (Bgy — 305" + 302 X (B — 305%)
Bzz.\' = ;.)—‘ == =7 ) +3. (2)

B B

As a simple case let us assume that the distribution of effects
of (m — 1) of the component causes are the same, at least in
respect to their second, third and fourth moments, all of which
are assumed to be finite, which we shall denote by M., Ms,
and My. Let us assume that the remaining cause is pre-
dominating in the sense that the corresponding three moments
of its effects are 4oM., 63 M3, and &4My, where 0o, 3, and 44 are
all positive and greater than unity. Under these conditions,
we get

B.. = (m— 1+ b3)> My?
Izx = (m -1+ bg)'* Mzs
and
_(m—1+5)Ms - 30m— 1 + 5*)M?
Borx = (m — 1 4 62)2My? +3

Evidently these two expressions approach o and 3 respec-
tively as the number 7 of causes becomes indefinitely large,
assuming that &, 43, and 44 are finite. In this way we come
to see that the skewness and flatness of a distribution of re-
sultant effects will, in general, be*approximately o and 3 if the
number 7 of causes is very large.

4. Economic Significance of Control from a Design Viewpoint

In Chapter III of Part I we called attention to the fact that
as a result of control we attain maximum benefits from quantity
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production. Only general statements as to obtaining these
benefits were given at that time. In Part IIl, however, we
developed the theoretical basis for control, making it now
possible to show specifically how control enables us to attain
these benefits. We shall consider here only the simplest kind of
examples.

A. Example 1.—Suppose that an assembly is to be made in
which two washers are to be used, one brass and the other mica.
Assume that it is desirable to maintain as closely as possible a
uniform overall thickness of these two washers. This could
be done, of course, by selecting the pairs of brass and mica
washers to give the desired thickness. Such a process, however,
would tend to counterbalance the benefits of quantity produc-
tion, since the economies rising from assembly processes result
from interchangeability of piece-parts.

Table 2 gives the results of measurements of thickness on
one hundred tool-made samples each of mica and brass washers
to be used in the manner previously indicated in the assembly
of an important piece of telephone equipment. The reader
may easily satisfy himself that both of these distributions are
sufficiently near normal to indicate that each of the piece-parts
was controlled, and we shall therefore assume this to be the
case. For this size of sample we are perhaps justified in assum-
ing that the observed standard deviations of these two dis-
tributions may reasonably be taken as the standard deviations
o; and o, of the objective controlled distributions of mica and
brass washers respectively. The theory of the previous section
shows that under these conditions the standard deviation of a
random assembly of two washers, one of each kind, is

= '\/;12 + 0'22.
»

Furthermore, it follows that the distribution of the sum of the
thickness in such a random assembly will be normally dis-
tributed about a mean value which is the sum of the mean
‘values of the two objective distributions.

Upon this basis, therefore, the design engineer is justified
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TaBLe 2.—TvyricaL DistriBution ReqQuisiTe ror ErriciEnt DEsion

Thickfless Number of Thickness Number of
~of Mica Washers .Of Brass Washers
in Inches in Inches
o 0088 1 o o182 1
o 008y 1 o o185 I
0 00g2 1 o o186 2
o 00y} 1 o o187 2
0 0094 1 0.0188 2
0 0093 1 0 0190 2
0 0098 2 O 0191 3
0 0099 1 0 o192 3
o 0100 2 0 0193 3
o orol 5 0 oI9§ 5
o olo2 2 o o196 6
o o103 3 0 o197 5
O 0104 7 o o198 4
o o108 1 O o199 !
o 0106 8 0 0200 3
o o107 10 o o201 8
o o108 10 O 0202 4
o o109 i 0 0203 5
o orto 3 0 0204 7
0 o111 3 0 0208 +
o oli2 § 0 0206 3
o o113 6 o 007 3
o olig 6 o 0208 o
o olig 3 o oo 3
o o116 3 o o211 1
0 ollg 1 o 0212 I
o 0213 3
0 0214 2
0 0214 3
o o216 2
O 0220 1
0 0222 1

in predicting that the overall thickness of random assemblies
of mica and brass washers will be distributed as shown in Fig. 2.
The dots in this figure show how closely the first one hundred
assemblies made from manufactured product check the pre-’
diction. Furthermore, if the observed average thickness of
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each distribution is taken as the expected value of the distribu-
tion, the design engineer can easily calculate the percentage of
assemblies that will be defective in respect to overall thickness
subject to the assumptions that have been made.

401 ~ OBSERVED DISTRIBUTION
=EXPECTED DISTRIBUTION

35

w
o
T

N
»
T

NUMBER OF WASHERS
s 8

S
.

oL 1
0027 0029

1
0.031 0033 0.035
THICKNESS IN INCHES

Fie. 2.—Statisticar Mersop Makgs Prepiction 1N DesieN PossiBLE.

B. Example 2.—For a shaft to operate in a bearing it is, of
course, necessary to have a certain clearance. Thus, if p; and
p2 represent the radii of the bearing and shaft respectively,
then the specification will, in general, state that the difference
p1 — p2 must satisfy the inequality

di < p1—p2 < dyy

where 4) and 4. are both positive. This situation is represented
schematically in Fig. 3.

In most instances the shdft and bearing are fitted. Some-
times, however, it is of economic importance to be able to
product shafts and bearings scparately and to assemble these
on the job. The question, of course, that is always raised is:
What will be the expected rejection of such assemblies because
of failure to satisfy the clearance specification?
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From the theory of the previous section we see that this
question can be answered readily, at least if we assume that
radii of bearings and shafts are normally controlled with stand-
ard deviations o and o respectively. Under these conditions
the difference p; — p» between any bearing and shaft chosen
at random will be distributed normally about a mean value
p1 — p2 with standard deviation

0= V0?40

o d; p' -Fz
SHAFT AND BEARING DISTRIBUTION OF DIFFERENCES BETWEEN
RADII OF SHAFT AND BEARING

Fic. 3—How Many Rejections Swoulp Wr Exrecr 1N AssEmBLY?

Hence, the probability of a random assembly being rejected
because the clearance fails to come within the required limits
is given by

I- ; '\7:;6""2112,
where
g = (p1 = p2) = (P1 — P2)
o
_di—=(Pi-p)
zp=— - — -
o
ds — (p1 —'P2)

and the value of the integral can be read directly from Table A.
C. Example 3.—We shall now consider a problem involving
maximum control. Many instances arise in production where
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materials must be covered with protective coatings. Of such
are the various kinds of platings, nickel, chromium, zinc, etc.
In other instances we have coatings of paper or lead.

In practically every instance of this kind it is very desirable
to maintain a uniform coating that is never less in thickness
than some prescribed value. It is obviously desirable from the
viewpoint of saving to reduce the variability to a minimum.
Table 3 gives an observed distribution of one such kind of

TasLe 3.—Do THE VariaTions 1N ThickNess InvicaTe A PossisLr Saving?

Thickness in Number Thickness in Number

Inches of . Inches of .
Obscrv.itions Observations

o 12§ 2 o 131 20
o 126 12 0 132 5
o 127 a1 o 133 3
0.128 18 o 134 o
O 129 33 o 135 3
o 130 33

coating supposed always to be more than o.124 inch in thick
ness. The histogram in Fig. 4 shows this distribution. What
40
ECONOMIC
GOAL
35

z 30|

o
8

v

NUMBER
S

’

" 1 't 1 i 1 1 1 1 1 3
0123 0.127 0.129 0.131 0.133
THICKNESS IN INCHES

Fic. 4—How Maximum ConTtroL SavEs MoNEY.
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does the theory of maximum control tell us about the uni-
formity of coating? In the light of the previous section the
lack of smoothness in this distribution is indicative of the
presence of assignable causes of variation which can be removed.
In fact, an investigation revealed assignable causes of variation,
and on removing these, the resulting quality approached the
distribution shown by the smooth curve of Fig. 4, representing
the state of maximum control for this particular kind of coating.
By attaining this state of maximum control, it is apparent
that the average thickness of coating is materially reduced
without increasing the probability of obtaining a defective
thickness.

Not only does control lead to a saving of material in such
cases but it also leads to a more uniform product because as
shown in Chapter XXIV of Part VII, it is practically impos-
sible to sample for protective purposes unless the quality is
controlled.
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PRESENTATION OF ORIGINAL EXPERIMENTAL
Resurts UseruL IN OBTAINING AN UNDER-
STANDING OF THE FUNDAMENTAL PRINCIPLES
UnDERLYING THE THEORY OF QuaLity CoNTROL

The six tables in this appendix give in detail the results of
4,000 drawings from each of the three experimental universes
referred to in the text. Tables A, B, and C give the original
drawings divided into groups of four in the order in which
they occurred. Tables D, E, and F give various statistics
for these samples of four. It should not be inferred that these
statistics are arranged to correspond to the samples as this is
not always the case. We have made extensive use of these
data in our discussions of the theory of quality control, and
it is advisable to reproduce these data if for no other reason
than that the rcader may wish to carry out for himself com-
putations similar to those referred to throughout the text.

There is, however, a far more important reason for present-
ing these experimental results. 1t will have become apparent
by this time that statistical theory rests upon a fundamental
natural law—the law of large numbers. In the last analysis
we must always appeal to experimental evidence to justify our
belief in such a law and to give us a feeling for its physical
significance. For example, in the discussion of the theory of
statistics, we always have to talk about doing something again
and again under the same essential conditions; or, as we have
said, under a controlled condition where the chance cause
system is constant.

We have used these data in various places throughout the
book to illustrate a controlled phenomenon. In particular we

437
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have shown how they can be used in checking the results of
the mathematical theory of distribution, and in certain other
instances, in indicating the probable character of some distri-
bution function not yet determined @ priori. Most of this
discussion was limited to the statistics of samples of four.
Often, of course, we wish to investigate in a similar way the
nature of the distribution functions for sample sizes other than
four. This can readily be done for the three types of universes
through the use of the data in Tables A, B, and C.

These data have been used in many ways other than those
mentioned in the text. Ior example, they have been found
to be of great use in the experimental determination of the
correlation between the average and range, which correlation is
sometimes required in the establishment of an efficient inspec-
tion method where it is not feasible for one reason or another
to calculate the standard deviation.

In this connection it is perhaps worthwhile to illustrate the
use of these data in indicating in a somewhat more concrete
manner than was donc in the text the nature of the statistical
limit involved in the statement of the law of large numbers.
For example, suppose we consider a thousand drawings from
any one of the universes, let us say the normal one. 1t will be
recalled that half of the 998 chips were of one color ! and half
of another. If we let p represent the ratio of the number of
chips observed to be of one color in a series of # drawings to
the number # of drawings, then this fraction p should obey
the law of large numbers and approach } as a statistical limit;
that s,

Ls p=41%.

n—> 0

Fig. 1 shows the statistical approach of the fraction p in one
such series of 1,000 drawings.

Obviously, as a result of the first drawing, p will be either
zero or unity. In fact, p will continue to remain zero or unity
antil a chip is drawn which is of a color different from that of

1 Colors used instead of plus and minus.
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the first one drawn. Thereafter p will never become equal to o
or 1, but will always lie somewhere within this range. In the
definition of a statistical limit, it was pointed out that there
is no value of # such that for » greater than this value, the
absolute value of p always becomes and remains less than some
preassigned quantity—characteristics which belong to a mathe-
matical limit.

The experimental results shown in Fig. 1 illustrate how the
fraction p oscillates back and forth. A student of the theory of
control can well afford to carry out similar tests of this nature
until he has gained a clear picture of the significance of the
statistical limit.
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TABLES

TaBLE A—4,000 drawings from a normal universe consisting of
998 approximately identical chips marked as indi-
cated in Table 22 of the text.

TaBLE B—4,000 drawings from a rectangular universe of 122
approximately identical chips marked as indicated
in Table 28 of the text.

TaBLe C—y4,000 drawings from a right triangular universe
made up of 820 approximately identical chips
marked as indicated in Table 28 of the text.

TasLE D—Observed distribution of arithmetic mean X, me-
Max. + Min.
~

dian, , mean deviation u, standard

pd

deviation o, and ratio 2 = — for 1,000 samples of
o

four from the noimal universe.

Observed distribution of arithmetic mean X, stand-

TasLe &

o . X
ard deviation g, and ratio 2 = — for 1,000 samples
g

of four from the rectangular universe.

TaBLeE F—Observed distribution of arithmetic mean X, stand-

. X
ard deviation o, and ratio z = — for 1,000 samples
ag

of four drawn from the right triangular universe.
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-APPENDIX III

A BiBLioGraAPHIC GUIDE WITH SUGGESTIONS
FoR StuDpY IN THE FUrTHER DEVELOPMENT
ofF A ScienTtiric Basis ror THE Economic Con-
TROL OF QuAaLITY OoF MaNUFACTURED PrODUCT

As stated in the preface, the present book is but an initial step
toward the formulation of a scientific basis for securing economic
control. Much remains to be done. In presenting a list of references
for further study, an attempt has been made to include those sugges-
tive of what appear to be profitable lines of further development.

Throughout the book we have had occasion to give many specific
references. The object of the present bibliography is to suggest refer-
ences of a more or less general nature to be read in connection with
each of the seven parts. It is noped that in many instances these ref-
erences will be suggestive of work which may be profitably done in
extending the theory of quality control, particularly in the direction
of the development of improved ways of securing good data through
the more thorough application of the scientific method.
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With the development of the atomic structure of matter and
electricity, it became necessary to think of laws as being statistical
in nature. The importance of the law of large numbers in the inter-
pretation of physical phenomena will become apparent to any one
who even hastily surveys any one or more of the following books:
Statistical Theories of Matter, Radiation, and Electricity, K. K. Darrow,
The Physical Review Supplement, Vol. I, No. 1, July 1929, also
published in the series of Bell Telephone Laboratories’ reprints,
No. 435; Introduction to Statistical Mechanics for Students of Physics
and Physical Chemistry, J. Rice, Constable & Company, Ltd.,
London, 1930; Statistical Mechanics with Applications to Physics and
Chemistry, R. C. Tolman, Chemical Catalog Company, New York,
1927; Kinetic Theory of Gases, 1.. B. Loeb, McGraw-Hill Book Com-
pany, New York, 1927; The Kinetic Theory of Gases, E. Bloch,
Methuen & Company, Ltd., London, 1924; Introduction to Modern
Physics, F. K. Richtmeyer, McGraw-Hill Book Company, New York,
1928; Modern Physics, H. A. Wilson, Blackie & Son, Ltd., London,
1928; Introduction to Contemporary Physics, K. K. Darrow, D. Van
Nostrand Company, Inc., New York, 19265 and Atoms, Molecules
and (Quanta, A. E. Ruark and H. C. Urey, McGraw-Hill Book Com-
pany, New York, 1930.

One cannot return from even a brief excursion into the field of
modern physics and chemistry without having caught a glimpse of
the importance of the concept of the statistical limit in all of the
latest developments. Fven in this field of exact science nothing is
exact. lIn the last analysis the influence of chance causes is felt.
Almost the only things that appear to be constant are distribution
functions or statistics of these functions—and this constancy is only
in the statistical sense. For example, one interested in the specifica-
tion of quality of materials need read only Chapter 111 of The Physics
of Solids and Liguids, P. P. Fwald, Th. Péschl and L. Prandtl,
Blackie and Son, Ltd., 1930, to see how far we are from being able
to explain some of even the simplest mechanical properties in terms
of atomic physics. :

2. Empirical Laws

To contrast the way in which the so-called exact and statistical
laws enable one to predict with the way in which an empirical law
does, the recent excellent book Business Cycles, W. C. Mitchell, Na-
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tional Buteau of Economic Research, New York, 1927, should prove
to be of interest. The author of this book discusses in a critical
manner the very extensive amount of work that has been done in
trying to develop a rational basis for predicting cyclic movements
with a net result that is not so very encouraging. Even a casual
reading of this book must impress one with the serious hopelessness
of trying to predict the future in terms of the past when the chance
cause system is not constant. In the present state of the scientific
method of induction, it appears that empirical relationships such as
time series give little basis for prediction. This conclusion is con-
sistent with that so admirably presented in a recent paper by S. L.
Andrew in the Be/l Telephone Quarterly, Jan., 1931, and also with
conclusions set forth in the recent book Business Adrift, by W. B.
Donham, Dean of the Harvard Business School. Such reading
cannot do other than strengthen our belief in the fact that control of
quality will come only through the weeding out of assignable causes
of variation—particularly those that introduce lack of constancy in
the chance cause system.

3. Frequency Distribution Functions

In Part ITT we considered very briefly the problem of determining
the kind of frequency distribution function or functions that we
might expect controlled quality to follow. In this connection we
touched upon the philosophy of frequency curves as laws of dis-
tribution.

Two systems of curves were mentioned in particular, namely, the
Pearson and the Gram-Charlier systems. Although we have not had
occasion to make much use of these functions as such, a serious
student of control of quality will find it greatly to his advantage to
read some of the original memoirs dealing with these two systems of
curves. Those of Pearson are naturally available in English and
cannot help but prove stimulating. The more formal part of Pearson’s
work in this field has been summarized by Flderton in the interesting
book, Frequency Curves and Correlation, second edition, Layton, Lon-
don, 1928. T. L. Kelley, a former student of Pearson, also has much
of interest to say about this system of curves in his book, Statistical
Method, Macmillan Company, New York, 1923.

Very interesting and stimulating accounts of the significance of
the Gram-Charlier series have been given by Arne Fisher, Mathe-
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matical Theory of Probabilities, 2nd edition, Macmillan Company,
New York, 1922; by F. Y. Fdgeworth in a series of articles referred
to in his article Probability in the 13th edition of the Encyclopedia
Britannica; and by T. N. Thiele, Theory of Observations, London,
1903. J. F. Steffensen in Some Recent Researches in the Theory of
Statistics and Actuarial Science, Cambridge University Press, 1930,
makes some very interesting and pertinent remarks on the theo-
retical foundation of certain types of frequency curves.

It is of particular interest to note the way in which Edgeworth
arrives at the Gram-Charlier series as a method of expressing the
results of the joint action of a complicated system of causes. Of
course, the Pearson system can be given somewhat similar causal
interpretation although great emphasis has not been laid upon this
point by many of those writing about the Pearson system.

The sythentic building up of a frequency curve in terms of the
effects of component groups of causes forms a basis, as we have seen,
for our discussion of the necessary and sufficient conditions of max-
imum control. We have emphasized the significance of the fact that,
as the number of causes of variability is increased, we seem to ap-
proach closer and closer to what we have termed the point (o, 3)
of maximum control in the 182 plane.

In this connection The Behavior of Prices, F. C. Mills, National
Bureau of Fconomic Research, Inc., New York, 1928, should prove
interesting reading, particularly that part having to do with the march
of the B's back to normalcy, as he puts it.

4. Probability

Probability and its Engineering Uses, T. C. Fry, D. Van Nostrand
Company, New York, 1928, and An Introduction to Mathematical
Probability, J. L. Coolidge, Oxford University Press, New York, 1925,
contain interesting discussions of the meaning of probability and the
difficulty involved in defining it.

5. Quality Control

The only book touching upon the subject of quality control in
anything like the sense of the present text is that by Becker, Plaut,
and Runge, referred to in Chapter I of Part L.
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REFERENCES FOR Part 11
1. Economics

The problem of economic control of quality in its broadest sense is,
as we have seen, that of doing what we want to do within limits which
are economical. To do this, we must establish economic standards of
quality. A brief outline of the economic considerations which must
be taken into account in attempting to establish such standards of
quality is given in an interesting article, ““Standard Quality,” G. D.
Edwards, Bell Telephone Quarterly, Vol. V11, pp. 292-303.

For example, in establishing such a standard, we must consider
the relationship between cost and value. Value, however, is not so
easily defined in a way that will cover all of the prevalent concepts
of this term. To attempt to do so leads us into difficulties touched
upon in our discussion of the definition of quality.

Naturally, value in some way or other depends upon the degree
to which a given quality satisfies human wants; but, in turn, human
wants are not constant even for the same person. Kurthermore, the
degree to which a thing having several quality characteristics tends
to satisfy the human wants of even a single person is to a large extent
a complicated and unknown function of the magnitudes of the phys-
ical characteristics of the thing. FEven assuming that the value
determined on the basis of the wants of a single person is a constant,
it is apparent that the values for different people differ among them-
selves so that, in the last analysis, value, if it can be expressed quanti-
tatively, is presumably a frequency distribution function.

A brief, terse exposition of the fundamental economic problems
involved in attaining a dynamic measure of value will be found in
the Mathematical Introduction to Economics, G. C. Evans, McGraw-
Hill Book Company, New York, 1930. Having obtained a picture of
the complicated nature of this problem, one may feel inclined to
despair of its solution. However, for some time to come, it is likely
that we shall not get away frop the desire on the part of all of us to
find some measure of quality which is common to all qualities.

In our discussion of economic control, we left out any detailed
consideration of this problem of finding an adequate measure of value,
even though such a measure apparently would serve a very useful
purpose. We started with the tacit assumption that when such a
measure of value can be found, it will have two characteristics: it will
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index, 48
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